
LEARNING MULTIPLE TARGET CONCEPTS FROM UNCERTAIN, AMBIGUOUS DATA
USING THE ADAPTIVE COSINE ESTIMATOR AND SPECTRAL MATCH FILTER

By

JAMES M. BOCINSKY

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2019

c⃝ 2019 James M. Bocinsky

For my wife, Kylie Bocinsky

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. Alina Zare, for all of her invaluable guidance,

support, and encouragement during my graduate studies. Also I would like to thank the

members of my thesis committee Dr. Paul Gader and Dr. Joe Wilson for their help and

valuable suggestions.

Additionally, thank you to all of my lab mates and in particular Connor McCurley, Dylan

Stewart, Matt Cook, and Daniel Shats for the valuable discussions, insight, and collaboration

throughout my studies.

Thank you to my parents, John and Christy, and to my brother John for instilling a work

ethic in me that has allowed me to complete my program. You have inspired me to be the best

version of myself and I cannot thank you enough for always supporting me in my endeavors.

Lastly, I can not thank my wife, Kylie Bocinsky enough, for your love and support

throughout my studies were invaluable. This would truly not be possible without your support.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 12

2 LITERATURE REVIEW . 17

2.1 Multiple Instance Learning for Target Detection 17
2.1.1 Axis-parallel Rectangles . 17

2.1.1.1 GFS elim-count APR . 19
2.1.1.2 GFS elim-kde APR . 20
2.1.1.3 Iterated discrimination APR 21

2.1.2 Diverse Density . 23
2.1.3 Expectation Maximization Diverse Density 25
2.1.4 Functions of Multiple Instances . 26

2.1.4.1 Convex FUMI . 26
2.1.4.2 Extended FUMI . 29

2.1.5 Multiple Instance Adaptive Cosine Estimator/Spectral Match Filter . . 31
2.1.6 Multiple Instance Hybrid Estimator 35

2.2 General Clustering Methods . 38
2.2.1 K-Means . 38
2.2.2 Fuzzy C-Means . 38
2.2.3 Gaussian Mixture Model . 39
2.2.4 Summary . 42

2.3 MIL Clustering for Dictionary Learning . 43
2.3.1 Multiple Instance Cluster Regression 43
2.3.2 Fuzzy Clustering of Multiple Instance Data 46
2.3.3 Robust Fuzzy Clustering for Multiple Instance Linear Regression 49

2.3.3.1 Initial regression models using fuzzy clustering 50
2.3.3.2 Non-primary instances using possibilistic clustering 51
2.3.3.3 Optimal number of regression models 53

3 PROPOSED METHODS . 55

3.1 Multi-Target Multiple Instance Adaptive Cosine Estimator/Spectral Match Filter 55
3.2 Greedy Initialization Approach . 57
3.3 Uniqueness Term Objective Function Initialization 60
3.4 Clustering Initialization Approaches . 61

5

3.4.1 K-Means . 61
3.4.2 Ranked K-Means . 62
3.4.3 MI-CR . 63

3.5 Original MI-ACE and MI-SMF Optimization Extended for Multiple Targets . . 64
3.6 Weighted Optimization Approach . 66
3.7 Uniqueness Term Objective Function Optimization 69

4 EXPERIMENTAL RESULTS . 72

4.1 Synthetic Hyperspectral Target Detection Data 72
4.1.1 Data Generation . 72
4.1.2 Synthetic Data Experiments . 75

4.2 MUUFL Gulfport Hyperspectral Target Detection Data 82
4.2.1 Individual Target Type Detection Experiments 84

4.2.1.1 Brown targets . 86
4.2.1.2 Faux vineyard green targets 88
4.2.1.3 Dark green targets . 89
4.2.1.4 Pea green targets . 91

4.2.2 All Target Types Detection Experiments 92
4.2.2.1 Initialization methods experiments 94
4.2.2.2 Optimization methods experiments 99

5 CONCLUSIONS AND FUTURE WORK . 104

APPENDIX

A SIMULATED DATA HYPERPARAMETER EXPERIMENTS 107

A.1 Initialization Hyperparameter Experiments 107
A.2 Optimization Hyperparameter Experiments 114

B MUUFL GULFPORT HYPERSPECTRAL HYPERPARAMETER EXPERIMENTS . . 118

B.1 Single Target Initialization Hyperparameter Experiments 118
B.2 All Targets Experiments . 124

B.2.1 Initialization Hyperparameter Experiments 124
B.2.2 Optimization Hyperparameter Experiments 130

REFERENCES . 134

BIOGRAPHICAL SKETCH . 136

6

LIST OF TABLES

Table page

4-1 Synthetic data initialization experimental results. 79

4-2 Synthetic data optimization experimental results. 82

4-3 MUUFL Gulfport number of single target types. 86

4-4 MUUFL Gulfport brown target initialization experimental results. 87

4-5 MUUFL Gulfport faux vineyard green target initialization experimental results. . . 89

4-6 MUUFL Gulfport dark green target initialization experimental results. 90

4-7 MUUFL Gulfport pea green target initialization experimental results. 92

4-8 MUUFL Gulfport number of all target types. 94

4-9 MUUFL Gulfport all target types initialization experimental results. 98

4-10 MUUFL Gulfport all target types optimization experimental results. 103

A-1 Synthetic data uniqueness term (initialization) hyperparameter experiment results. 108

A-2 Synthetic data cluster rank weight hyperparameter experiment results. 111

A-3 Synthetic data number of clusters hyperparameter experiment results. 113

A-4 Synthetic data kernel bandwidth hyperparameter experiment results. 115

A-5 Synthetic data uniqueness term (optimization) hyperparameter experiment results. 117

B-1 MUUFL Gulfport single target number of clusters hyperparameter experiment results.120

B-2 MUUFL Gulfport single target cluster rank weights hyperparameter experiment
results. 123

B-3 MUUFL Gulfport all targets uniqueness term (initialization) hyperparameter experiment
results. 125

B-4 MUUFL Gulfport all targets number of clusters hyperparameter experiment results. 127

B-5 MUUFL Gulfport all targets cluster rank weights hyperparameter experiment results.129

B-6 MUUFL Gulfport all targets uniqueness term (optimization) hyperparameter experiment
results. 131

B-7 MUUFL Gulfport all targets kernel bandwidth hyperparameter experiment results. 133

7

LIST OF FIGURES

Figure page

1-1 RGB Image of the MUUFL Gulfport dataset. 14

1-2 Imprecision of Gulfport dataset ground truth. 15

2-1 Three APR techniques’ relationships. 18

2-2 Representation of the GFS elim-count algorithm. 19

4-1 Four synthetic data hyperspectral signatures. 73

4-2 Various initialized signatures using ACE on synthetic data. 77

4-3 ROC curves for ACE initialized signatures on synthetic data. 77

4-4 Various initialized signatures using SMF on synthetic data. 78

4-5 ROC curves for SMF initialized signatures on synthetic data. 78

4-6 Various optimized signatures using ACE on synthetic data. 80

4-7 ROC curves for ACE optimized signatures on synthetic data. 80

4-8 Various optimized signatures using SMF on synthetic data. 81

4-9 ROC curves for SMF optimized signatures on synthetic data. 81

4-10 MUUFL Gulfport target ground truth locations. 83

4-11 Single target type bagging image mask example. 85

4-12 Brown initialized target signature results using ACE. 86

4-13 Brown initialized target signature results using SMF. 87

4-14 Faux vineyard green initialized target signature results using ACE. 88

4-15 Faux vineyard green initialized target signature results using SMF. 88

4-16 Dark green initialized target signature results using ACE. 89

4-17 Dark green initialized target signature results using SMF. 90

4-18 Pea green initialized target signature results using ACE. 91

4-19 Pea green initialized target signature results using SMF. 91

4-20 All target types bagging image mask. 93

4-21 All targets initialized signatures results using ACE. 95

8

4-22 All targets initialized signatures ROC curve results using ACE. 96

4-23 All targets initialized signatures results using SMF. 97

4-24 All targets initialized signatures ROC curve results using SMF. 98

4-25 All targets optimized signatures results using ACE. 100

4-26 All targets optimized signatures ROC curve results using ACE. 101

4-27 All targets optimized signatures results using SMF. 102

4-28 All targets optimized signatures ROC curve results using SMF. 103

A-1 Simulated data, initialized signatures, hyperparameter experiment for uniqueness
term weight. 107

A-2 Simulated data, initialized ROC curves, hyperparameter experiment for uniqueness
term weight. 107

A-3 Simulated data, initialized signatures, hyperparameter experiment for cluster rank
weight, 4 targets per positive bag. 109

A-4 Simulated data, initialized ROC curves, hyperparameter experiment for cluster
rank weight, 4 targets per positive bag. 109

A-5 Simulated data, initialized signatures, hyperparameter experiment for cluster rank
weight, 15 targets per positive bag. 110

A-6 Simulated data, initialized ROC curves, hyperparameter experiment for cluster
rank weight, 15 targets per positive bag. 110

A-7 Simulated data, initialized signatures, hyperparameter experiment for number of
clusters. 112

A-8 Simulated data, initialized ROC curves, hyperparameter experiment for number of
clusters. 112

A-9 Simulated data, optimized signatures, hyperparameter experiment for kernel size. . 114

A-10 Simulated data, optimized ROC curves, hyperparameter experiment for kernel size. 114

A-11 Simulated data, optimized signatures, hyperparameter experiment for uniqueness
term weight. 116

A-12 Simulated data, optimized ROC curves, hyperparameter experiment for uniqueness
term weight. 116

B-1 MUUFL Gulfport brown targets initialized signatures experimental results for number
of clusters hyperparameter experiment. 118

9

B-2 MUUFL Gulfport pea green targets initialized signatures experimental results for
number of clusters hyperparameter experiment. 118

B-3 MUUFL Gulfport dark green targets initialized signatures experimental results for
number of clusters hyperparameter experiment. 119

B-4 MUUFL Gulfport faux vineyard green targets initialized signatures experimental
results for number of clusters hyperparameter experiment. 119

B-5 MUUFL Gulfport brown targets initialized signatures experimental results for cluster
rank weights hyperparameter experiment. 121

B-6 MUUFL Gulfport pea green targets initialized signatures experimental results for
cluster rank weights hyperparameter experiment. 121

B-7 MUUFL Gulfport dark green targets initialized signatures experimental results for
cluster rank weights hyperparameter experiment. 122

B-8 MUUFL Gulfport faux vineyard green targets initialized signatures experimental
results for cluster rank weights hyperparameter experiment. 122

B-9 MUUFL Gulfport all targets initialized signatures experimental results for uniqueness
term weights hyperparameter experiment. 124

B-10 MUUFL Gulfport ROC curves for initialized signatures with various uniqueness
term weight settings. 125

B-11 MUUFL Gulfport all targets initialized signatures experimental results for number
of clusters hyperparameter experiment. 126

B-12 MUUFL Gulfport ROC curves for initialized signatures with various number of
clusters settings. 127

B-13 MUUFL Gulfport all targets initialized signatures experimental results for cluster
rank weights hyperparameter experiment. 128

B-14 ROC curves for initialized signatures with various cluster rank weights settings. . . 129

B-15 MUUFL Gulfport all targets optimized signatures experimental results for uniqueness
term weight hyperparameter experiment. 130

B-16 MUUFL Gulfport ROC curves for optimized signatures with various uniqueness
term weight settings. 131

B-17 MUUFL Gulfport all targets optimized signatures experimental results for kernel
bandwidth hyperparameter experiment. 132

B-18 MUUFL Gulfport ROC curves for initialized signatures with various kernel bandwidth
settings. 133

10

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

LEARNING MULTIPLE TARGET CONCEPTS FROM UNCERTAIN, AMBIGUOUS DATA
USING THE ADAPTIVE COSINE ESTIMATOR AND SPECTRAL MATCH FILTER

By

James M. Bocinsky

May 2019

Chair: Alina Zare
Major: Electrical and Computer Engineering

The Multiple Instance Adaptive Cosine Estimator and the Multiple Instance Subspace

Match Filter are algorithms used in target detection, where a target class of interest is

attempted to be detected amongst a non-target, background class. These algorithms learn a

single feature vector representation to estimate a target class in a transformed feature space

that normalizes the data to the background class. In this thesis, a number of algorithms are

proposed to learn multiple target representations. These are evaluated using their respective

performance and computation time using experiments containing a simulated hyperspectral

dataset and the MUUFL Gulfport hyperspectral dataset captured over the campus of Southern

Mississippi - Gulfport. The results are analyzed to conclude which variation of the multiple

target algorithms is best in terms of performance and computation time.

11

CHAPTER 1
INTRODUCTION

In traditional supervised learning, each training data sample is paired with a corresponding

label. However in many applications, obtaining data with sample level labels is often not

possible. This can occur because it is too expensive, too time consuming, or the data presents

itself in an uncertain, ambiguous manner. Uncertainty can present itself in data due to

limitations of sensors. An example of this is using a Global Positioning System (GPS) to record

ground truth information for an overhead, flight data collection. Due to the inaccuracies of the

GPS, the collected data may exist in different pixel locations in the image than what is labeled

by the GPS based ground truth. It is known that the pixel of interest is near the recorded

ground truth, but it is uncertain if it is actually at that exact pixel location or not.

Furthermore, it can be infeasible to label individual instances due to cost or time

limitations. It is more practical to label regions of data instead of individual instances, saving

both the time and cost of processing data collections. For example, in image processing it is

much easier to label an image as having an object of interest in it, rather than labeling each

pixel where the exact object of interest exists. Additionally, if a bounding box is used to label

where an object is in an image, there may exist other objects in the bounding box and bring

about ambiguity in the data.

Learning from uncertain, ambiguous data has been an active area of research since the

late 1990s and is known as multiple instance learning (MIL). This was formally constructed

by Dietterich et al. (1997) when it was desired to learn which drugs are active in a mixture

of drugs. In MIL, algorithms are designed to learn from multiple instances that are grouped

together that share a label. These groups of data are known as bags. In many variations of

MIL, like target detection or multiple instance regression, it is uncertain what the label of each

instance is within each bag of data. These aspects make using traditional machine learning

algorithms difficult, but by developing multiple instance learning algorithms, tasks that were

once unfeasible before can be solved.

12

One application of multiple instance learning is performing target detection using

hyperspectral data, where an algorithm attempts to learn representations of the training

data to perform target detection against a background class. Hyperspectral sensors collect both

spatial and spectral information by receiving reflected electromagnetic energy across a high

number of wavelengths, often on the order of hundreds of wavelengths. Hyperspectral data is

useful for classifying objects because the reflectance of various materials differ across different

wavelengths of light making the received reflectance response unique for many different

types of materials. Lastly, because the hyperspectral uses hundreds of bands, the data that

is received is feature rich and allows for many different approaches to be explored in machine

learning.

Even with these nice properties, hyperspectral data poses unique challenges. Firstly,

the spatial resolution of hyperspectral sensors are often much lower than traditional digital

cameras. This means that the objects of interest in an image can be at the subpixel level and

need to be unmixed. Hyperspectral unmixing reduces down to two primary objectives. First,

the reflectance of the item of interest needs to be estimated, known as endmember estimation.

During this process, the spectral response corresponding to all items of interest are attempted

to be extracted and estimated from the total spectral response. Secondly, the proportion of the

spectral response for the item of interest is estimated, known as abundance estimation. This

is often modeled as a convex mixing model which assumes each pixel is a combination of it’s

endmembers, shown in Equation (1-1) and (1-2).

xi =

K∑
k=1

aikdk + εi , i = 1, ...,N (1-1)

K∑
k=1

aik = 1, aik ≥ 0,∀i , k , (1-2)

where N is the number of pixels, K is the number of endmembers or types of objects in the

image, xi is a hyperspectral response for the i th pixel, dk is the estimated endmember also

13

known as the spectral signature, and aik is the abundance for the k th endmember at the i th

pixel.

Often within a hyperspectral image, the number of target instances is much fewer than

the number of background instances. Within a hyperspectral image with a size of more than

100 x 100 pixels there may only be a few pixels that contain target. As mentioned previously,

these target instances may even be subpixel as well. Due to this, it becomes very challenging to

train traditional classifier models and algorithms have been developed to emphasis detection of

target instances instead of overall classification.

Lastly, a global tracking system like a GPS is often used during hyperspectral data

collections. As mentioned before, inaccurate GPS may cause the ground truth to be uncertain

and the exact labels of pixels will not be accurate. This is commonly addressed in machine

learning algorithms by using windows of data instead of single instances within an image.

These problems naturally leads themselves to promote the use of a multiple instance learning

algorithms for hyperspectral target detection.

Figure 1-1. RGB Image of the MUUFL Gulfport dataset (Gader et al., 2013)

14

Figure 1-2. Zoomed in region of the RGB Image of the Gulfport dataset showing a brown
target that is a pixel off of the recorded ground truth, showcasing the imprecise
ground truth.

The primary objective of performing target detection using hyperspectral data is to detect

unknown targets with a high rate of detection and a low false alarm rate. Other objectives like

learning target concepts from the data or the proportions of the target concepts are of interest

as well. A pair of multiple instance learning algorithms known as the multiple instance adaptive

cosine estimator (MI-ACE) and the multiple instance spectral match filter (MI-SMF) have

been used with hyperspectral data and have shown competitive results with other algorithms

in terms of single target concept estimation and detection. A gap in research is if this pair of

algorithms can be extended to learn multiple target concepts instead of just one. In the past, if

these pair of algorithms were used to learn multiple target concepts, they were trained on each

target type individually. Then, the results of each individual training would be combined to

form a group of learned signatures, often referred to as a dictionary. Instead, the objective here

is to develop an algorithm that will learn all of the target concepts at once without knowing

15

what target types exist in each of the positive bags. The research questions that are addressed

in this thesis are listed below.

1. Between the variations of the multi-target algorithms proposed, is there a variation that
is able to learn the underlying hyperspectral target signatures? If so, which multi-target
method performs the best considering detection performance and computational
efficiency?

2. Using a clustering initialization approach for the multi-target algorithms, which of the
three clustering methods (K-Means, Ranked K-Means, and MI-ClusterRegress) performs
the best, considering detection performance and computational efficiency?

3. Are any of the multi-target algorithm variations better, considering detection performance
and computational efficiency, than other popular multiple instance learning algorithms
such as the single target versions, the Adaptive Cosine Estimator (ACE) and Spectral
Match Filter (SMF) detection statistics using manually selected target concepts, and the
Multiple Instance Hybrid Estimator?

There is a gap in the literature that has not been explored, a multiple instance learning

algorithm focusing on optimizing detection via the Adaptive Cosine Estimator (ACE) and the

Spectral Match Filter (SMF), while learning multiple target concepts. This document will

investigate three novel areas of initialization approaches and two novel optimization approaches

to determine if any of these approaches can successfully learn multiple target concepts under

a multiple instance learning framework. The objective of the proposed algorithms is to be able

to learn multiple target concepts that are optimized for target detection using ACE or SMF,

without knowing anything about the various target types that exist in uncertain labeled data.

16

CHAPTER 2
LITERATURE REVIEW

2.1 Multiple Instance Learning for Target Detection

Multiple instance learning is a subfield of machine learning where an algorithm or model

learns from imprecise labels for various tasks including classification and regression. Multiple

instance learning is often used for two class classification and target detection. Within multiple

instance learning for target detection, individual feature vectors from a dataset, known as

instances, are grouped into bags which are labeled as “positive” or “negative” based on their

contents. A bag is labeled as positive if it contains at least one instance corresponding to a

target class of interest, and a bag is labeled as negative if it contains only instances from the

background, non-target class. A multiple instance algorithm for target detection will use this

presumed knowledge to best estimate a target concept, in the form of a feature vector, also

known as a target signature. The primary objective of multiple instance learning for target

detection is to learn target signatures that best represent true positive instances while being as

dissimilar to negative instances as possible.

2.1.1 Axis-parallel Rectangles

The Axis-parallel Rectangles (APR) techniques proposed by Dietterich et al. was used

for determining the principal chemical compound drugs in a mixture of compounds that was

responsible for making a mixture “active” Dietterich et al. (1997). This problem directly forms

the multiple instance problem because the compound mixtures are only known to form an

active bond or not. It is unknown which variation of the drug in the mixture is responsible

for the activation. This application has been provided to show how a problem can fit into

the MIL framework, but this algorithm is not limited to this application and has been used

in many other applications. Putting this in terms of a general MIL framework, each mixture

is considered a bag. Mixtures with an active drug are considered positive bags, and mixtures

without an active drug are considered negative bags. The active drug is the feature vector of

interest, also known as the target signature trying to be estimated.

17

The premise of the APR technique is to find a bounding box for every feature that

includes an instance from each positive instance while excluding all of the instances from

negative bags. An APR or bounding box is a set of thresholds, one for each feature dimension,

that is used to discriminate between two classes. By using three different APR techniques

shown in Figure 2-1, the authors were able to determine a target concept that was responsible

for for the drug activation with differing levels of accuracy. The first APR technique, known

as “GFS elim-count” (greedy feature selection elimination count), creates a bounding box

that contains all positive instances, known as the “all-positive APR”. Then the bounding box

is iteratively shrunken to remove negative instances until all negative instances are removed.

The second APR technique which is an outside-in approach called “GFS elim-kde” (greedy

feature selection elimination kernel density estimation), also uses a bounding box with iterative

shrinking to eliminate negative instances. This technique differs because it uses a cost function

to estimate the cost of eliminating a positive instance, so that the negative instances that are

associated with the least cost are eliminated first. Finally, the last APR technique which is an

inside-out approach called “iterated-discrim” (iterated discrimination), takes an initial positive

instance and grows a bounding box to contain at least one positive instance from every bag.

These algorithms are explained in more detail in Sections 2.1.1.1 - 2.1.1.3. A relationship chart

has been provided to show how the algorithms relate to each other in Figure 2-1.

Figure 2-1. A visualization of how the 3 different APR techniques in bold boxes relate to each
other.

18

2.1.1.1 GFS elim-count APR

The goal of the GFS elim-count algorithm is to create a bounding box that includes as

many positive instances and as few negative instances as possible. It accomplishes this by

first determining a bounding box APR that includes all instances from positive bags called the

“all-positive APR”. This initial APR is constructed without any regard to whether there are any

negative instances inside the all-positive APR. As seen in Figure 2-2, the all-positive APR for 2

features, x1 and x2, is visualized as the bold, black box. Each different shape corresponds to a

different bag. The instances from positive bags are the empty shapes, while the instances from

negative bags are visualized as filled in shapes.

Figure 2-2. Representation of the GFS elim-count algorithm. Each shape is a different mixture
where solid shapes are negative instances and empty shapes are instances from
positive mixtures. The numbers on each negative instance represent the count, how
many positive instances would be removed if the APR were to shrink on that
“side.”

19

After constructing the all-positive APR, the algorithm removes negative instances by

shrinking the APR in an iterative manner. For each negative instance, it is determined the

number of positive instances that would be removed if the APR were to shrink by removing

that negative instance. These counts are then used to determine which “side” of the APR

should be shrunk next. Here the side refers to one of the thresholds of the feature vector. This

is done in an iterative manner until all negative instances have been removed from the APR. In

Figure 2-2 you can see the result of GFS elim-count shown as the dashed box. The numbers

next to each negative sample represent how many positive instances would be removed if that

side was shrunk to remove that instance.

Although the GFS elim-count technique will determine an APR with only instances from

positive bags, it does not address the multiple instance problem directly. The method does not

take in to account if it will remove all of the instances from a particular positive bag, nor does

it have any knowledge of what instance belongs to what bag. It merely knows whether how

many positive instances will be removed if a particular negative instance is removed. With this,

it can be seen that the algorithm will remove all of the instances from a positive bag if it is

required to remove all of the negative instances from the APR.

2.1.1.2 GFS elim-kde APR

Dietterich et al. noticed the problem of GFS elim-count potentially removing all of the

instances from a particular positive bag and wanted to address the problem directly. To address

this they came up with a cost function for removing a positive instance. This cost function

includes a Gaussian kernel density estimate (kde) to help estimate the likelihood of an instance

being relevant. The cost of eliminating the i th instance from bag j , denoted as xj ,i , depends

on how alike it is to the other instances from bag j . This is modeled using the Gaussian kernel

density estimate. A kernel is centered at each positive instance and estimates the likelihood

of other positive instances being nearby in the feature space. If the instance has other nearby

instances from the same bag, then it is given a high cost of elimination. Whereas if the

instance is far away from other instances in the feature space, then it is an instance that should

20

not be included in the APR. Lastly, it can be seen in Equation (2-1) that if an instance is the

last remaining instance in a positive bag, then it will have a very high cost of elimination.

(
−

Nj∑
l=1,l ̸=i

Dd(xj ,l)

)
+ αDd(xj ,i) (2-1)

In Equation (2-1), Dd(x) is the kernel density estimate at point x along feature d , l is

an index for all other positive instances remaining from bag j , Nj is the number of positive

instances in bag j that remain in the APR, and α is a hyperparameter used to control how

much an affect the second term plays. The first term corresponds to the cost of removing an

instance from bag j , and the second term corresponds to how isolated the instance xj ,i is along

feature d . Breaking down this cost function there are three major takeaways.

1. The cost of removing data point xj ,i is small if there are many other surviving positive
instances from the same j th positive bag.

2. The instance xj ,i should be eliminated if other surviving positive instances from the same
j th bag have feature values that are frequently observed. This can be interpreted that
those other survivors are the relevant instances that should be kept.

3. If the instance xj ,i is isolated from other positive instances than it is not a relevant
instance and should be removed.

This is an “outside in” approach which iteratively eliminates negative instances that

have the least cost of elimination. Where the cost is the sum of the cost of removing the

positive instances that would also be removed with the negative instance. When all of the

negative instances have been removed the algorithm stops removing instances. At this point,

the bounding box is determined and the algorithm is complete.

2.1.1.3 Iterated discrimination APR

Opposite of the “outside in” approach, the Iterated Discrimination APR takes an “inside

out” approach. This approach starts with a single positive instance and grows an APR outward

to include other positive instances.

The three steps of this algorithm are:

1. Grow - Grow an APR with tight bounds around the positive samples.

21

2. Discrim - Choose a set of discriminating features to use in the APR.

3. Expand - Expand the APR to be more general.

The first step is to grow an APR inside out to include other positive samples. The goal is

to create the smallest APR that consists of at least one positive instance from every mixture.

The size of an APR is defined in Equation (2-2).

Size(APR) =
∑
d

ubd − lbd (2-2)

where ubd and lbd are the upper and lower bound respectively of a dimension, d . The

approach starts with an initial seed positive instance, and then greedily selects other positive

instances to add in to it’s APR. The positive instance added is the instance that would increase

the size of the APR the least. On top of this, a backfitting algorithm is added. This algorithm

still selects positive instances in a greedy manner, but it reconsiders all previous decisions every

time a positive instance is added to the APR, known as backfitting. If an instance from the

same mixture would decrease the size of the APR for that decision, the decision is changed and

the instance is replaced with the new instance that makes the APR smaller.

The second step is to select discriminating features for the APR. A strong discriminating

feature is one that discriminates against many negative instances and as well has a large

distance in between the APR boundary and the closest negative instance. A strong feature is

formally defined as one where:

1. the closest negative instance lies more than δ, a user set distance, outside the bounds of
the APR along feature d

2. the closest negative instance lies the furthest away from the APR along feature d than
any other feature

With this definition of a strong feature, the algorithm then iteratively selects features to

select the bounds needed for the APR. The negative instances that were exterior to the APR

from previous feature selections are not considered for further feature selection. The process of

22

selecting features to determine which bounds of the APR will be used is complete when all of

the negative instances are external to the APR.

The iterated discrimination algorithm uses both the Grow and Discrim alternatively to

construct the APR. First, an APR is constructed using all of the features. Then, a set of

discriminating features are selected based on the original APR. Continuing, a new APR is

constructed, but this time only using the discriminating features found from the previous APR.

Then, another set of discriminating features are selected based on this APR. This process

continues until it converges which typically takes 3-4 iterations.

Finally, the last step is to expand the APR to improve generalization. To accomplish

this, the probability of a positive instance residing along a feature is used to extend the APR

boundaries. To calculate the probability, a kernel density estimation of the positive instances is

computed. By using the kernel density estimation, the probability of a positive instance being

outside the expanded bounds is controlled by a hyperparameter, ε. The other hyperparameter

that is selected is the width of the Gaussian kernel, τ , used for kernel density estimation. By

expanding the APR’s bounds, the model is able to improve generalization to other positive

instances. This mitigates labeling positive instances that reside just outside the original bounds

as negative instances.

2.1.2 Diverse Density

Diverse Density (DD) uses multiple instance learning to learn a target concept that is

close to the intersection of many positive bags while being far from negative bags (Maron

and Lozano-Pérez, 1998), (Maron and Ratan, 1998). Namely, DD uses the existing training

data subspace, to learn a target concept. The target concept comes from a region with a

high “density” positive instances from different bags that is far from negative instances, thus

the name Diverse Density. By using the existing data space and choosing the region with a

maximum diverse density, the algorithm can select a representation that learns the true concept

of a target.

23

A probabilistic measure to estimate diverse density was proposed to determine what region

of the manifold has the most amount of instances that came from different positive bags.

This can be seen in Equation (2-3), where x are instances from the j th bag, t is a true target

concept that is being learned, B+j and B−
j are the j th positive and negative bags respectively.

argmax
x

∏
j

Pr(x = t|B+j)
∏
j

Pr(x = t|B−
j) (2-3)

To calculate the terms in the general diverse density measure, Equation (2-3), a noisy-or

model was assumed (Srinivas, 1993). This model shows that the joint probabilities can be

calculated as shown in Equation (2-4) and (2-5).

Pr(x = t|B+j) = Pr(x = t|B
+
j1,B

+
j2, ...,B

+
jNj
) = 1−

∏
i

(1− Pr(x = t|xij ∈ B+j)) (2-4)

Pr(x = t|B−
j) =

∏
j

(1− Pr(x = t|xij ∈ B−
j)) (2-5)

The probability of an individual instance being a potential target is shown in Equation

(2-6).

Pr(x = t|xij) = exp(−∥xij − x∥)2 (2-6)

This probability measure is proportional to a Gaussian distribution and measures the

distance between an instance, xij, and the potential target, x. If one of the instances from a

positive bag is close to x, then the probability is high. More so, if all of the positive bags have

one instance that is close to x, and no negative bags are close to x, then x will have a even

higher diverse density. It can also be seen that any additional instance from a bag that is not

yet near x will give an exponential increase to the diverse density. Similarly, if any negative

instance is near, it will drive down the diverse density.

24

Lastly, DD not only determines a target concept, but also determines weights for the

target’s features to determine which features are relevant. To accomplish this, the distance

between two points xij and x in the feature space is modified to include a weight as shown in

Equation (2-7).

∥xij − x∥2 =
∑
k

wk(xijk − xk)2 (2-7)

Where each k th feature will have a learned weight associated to it. To learn the weights a

gradient ascent algorithm is used. Since the data space can be large in some applications, only

the positive instances are considered as starting points for gradient ascent. The location in the

manifold space that provides the largest diverse density measure is the region where the learned

target concept exists.

2.1.3 Expectation Maximization Diverse Density

Expectation Maximization Diverse Density (EM-DD) is an extension of the DD algorithm

where EM is used to select which datapoint in each bag is most likely responsible for providing

the label for that bag (Zhang and Goldman, 2002). For example, EM is used to determine

which instance from a positive bag is most likely the target representative in that bag that

gives that bag’s label a positive label. As stated by Zhang and Goldman (2002) when using

the Musk data set, the EM-DD algorithm is much more efficient, by 10-100 times, because

it operates on only one instance from each bag. Namely, the DD algorithm is still used but

operates on the data points from each positive bag that is most likely the target from that bag.

By doing this the algorithm is more efficient because it only needs to consider these data points

when calculating the Diverse Density metric.

To operate on the instance level of data, EM is used to determine which instance from a

bag is responsible for that bag’s label, a missing attribute, and works as follows. During the

expectation step (E-step), the datapoint from each positive bag that is most like the current

estimation of a target concept, t, is determined. This is known as the bag representative and is

selected using the author’s generative model, shown in Equation (2-8).

25

x∗j = arg max
xij∈Bj

exp(−∥xij − t∥)2 (2-8)

During the maximization step (M-step), a new target concept, t′ is estimated. This is

accomplished by using all of the bag representatives from the E-step, calculating their diverse

density metric, and using gradient ascent on the bag representative that maximizes the diverse

density metric to estimate a new target concept, shown in Equation (2-9). Then, the algorithm

returns back to the E-step and repeats this process until the algorithm converges or the

maximum number of iterations is reached.

t′ = argmax
t

∏
j

Pr(Lj |t, x∗j) (2-9)

2.1.4 Functions of Multiple Instances

The Functions of Multiple Instances (FUMI) algorithm extends the approach of the

Sparsity Promoting Iterated Constrained Endmember (SPICE) algorithm (Zare and Gader,

2007). The SPICE algorithm is an unsupervised algorithm that learns the proportions and

endmembers of an unlabeled dataset. An endmember is a pure response of a object of interest.

FUMI extends the SPICE algorithm by using labeled data to learn a target endmember

(or prototype) as well as non-target prototypes (Zare and Gader, 2010). By learning these

prototypes, FUMI is able to use the prototypes to perform target detection on a dataset with

unknown labels. Since the origination of FUMI, different variations of the algorithm have been

created. In this literature review the original FUMI algorithm, C-FUMI, short for convex FUMI,

and an extension of this, E-FUMI are discussed.

2.1.4.1 Convex FUMI

The objective of Convex FUMI (C-FUMI) is to learn a target prototype, several non-target

prototypes, and the number of non-target prototypes needed. To accomplish this, each binary

labeled data point of the training data will be estimated as a proportion of learned prototypes.

In this algorithm a set of prototypes, E, is learned, where eT is the learned target prototype,

26

and ej and ek are the j th and k th non-target prototype. Proportions of each data point are

also estimated using a weight pik for the k
th prototype in data point i . This is represented by

Equation (2-10).

xi = piTeT +

M∑
k=1

pikek (2-10)

The data points labeled as target must have some unknown positive weight piT for the

target prototype eT , i.e., x
+
i = piTeT−

∑M
k=1 pikek where piT > 0. Furthermore, the non-target

labeled data points must have zero weight for the target prototype, i.e., x−i =
∑M
k=1 pikek.

In SPICE, the algorithm that FUMI extends, the prototypes and proportions are updated

by minimizing the objective function shown in Equation (2-11). SPICE is an unsupervised

algorithm that uses alternating optimization on the learned endmembers and proportions to

minimize the objective function.

The objective function can be broken down into three terms. The first term computes

the squared error between data point xi and it’s proportions of prototypes (endmembers). The

second term minimizes the distance between prototypes providing a tight fit of prototypes

around the data. The third term promotes sparsity which allows the algorithm to determine M,

the number of non-target prototypes needed, where γk =
Γ∑N
i=1 pik

. Γ is a parameter used to

control the level of sparsity of the learned prototypes.

G = (1−µ)
N∑
i=1

∥∥∥∥∥
(
xi −

M∑
k=1

pikek

)∥∥∥∥∥
2

2

+
µ

2

M∑
k=1

M∑
j=1

∥(ek−ej)∥22+
M∑
k=1

γk

N∑
i=1

pik = (1−µ)R+
µ

2
V+S

(2-11)

F = (1−µ)
N∑
i=1

∥∥∥∥∥
(
xi − l(xi)piTeT −

M∑
k=1

pikek

)∥∥∥∥∥
2

2

+
µ

2
R+µ

M∑
k=1

∥(eT−ek)∥22+S+
N+∑
i=1
l(xi)=1

1

σ2
(piT−1)2

(2-12)

27

C-FUMI extends SPICE by using data that is labeled as target or non-target, to learn

a target prototype and multiple non-target prototypes. The objective function is similar to

SPICE and is shown in Equation (2-12). Some of the terms are different. One key difference

is found in the first term. l is 1 when xi is from the target class, and 0 when xi is from the

non-target class. This ensures the constraint that non-target instances can be represented by

using only the non-target prototypes. Again, the fourth term helps the algorithm learn the

number of non-target prototypes. When the proportions of an unneeded prototype are near

zero, that prototype is removed without affecting the squared error terms. The fifth term uses

a hyperparameter, σ2, which can be adjusted based on the uncertainty of the labeling, or prior

knowledge about the proportions of target endmembers in the positive bags. σ2 should be large

if there are a small proportion of target endmembers in the positive bags.

After the prototypes have been learned, Zare and Gader (2010) proposed target detection

can be done in two different manners. The first way to perform target detection is by

computing the residual sum of squared errors of a test sample and the proportions of the

learned prototypes. The proportion value of the target concept is used as the detection

statistic. This is shown in Equation (2-13).

∥∥∥∥∥
(
xi − piTeT −

M∑
k=1

pikek

)∥∥∥∥∥
2

2

(2-13)

The second method proposed for using the prototypes for target detection is one that

is inspired by the Hybrid Subpixel Detector method (Broadwater and Chellappa, 2007). The

detection statistic is the ratio of the residual errors from both sets of prototypes, where the

numerator corresponds to the residual error of the test sample being represented as non-target

prototypes, and the denominator is the residual error of the test sample being represented as

the target and non-target prototypes. This is shown in Equation (2-14).

28

∥∥∥∥(xi − M∑
k=1

p∗ikek

)∥∥∥∥2
2∥∥∥∥(xi − piTeT − M∑

k=1

pikek

)∥∥∥∥2
2

(2-14)

2.1.4.2 Extended FUMI

An extended version of C-FUMI, called E-FUMI, allows for bag level training label

uncertainty (Jiao and Zare, 2015). In the context of images, E-FUMI only requires the data

to labeled as an approximation of where a target prototype may exist. In other words, the

labels only specify that at least one instance within a region must contain some proportion

of the target prototype, but it is unknown which instances within that region contain the

target prototype. In this regard, the E-FUMI algorithm fits the Multiple Instance Learning

(MIL) framework more clearly, where a region with a proportion of target prototype would be

considered a positive bag, and a region without any target prototypes would be considered a

negative bag.

To solve this problem, an Expectation Maximization (EM) approach is used. The hidden

latent variables for this problem are the instance-level labels. The complete data log-likelihood

for this problem is shown in Equation (2-15). This is an extension of C-FUMI and it can be

seen that the labels for each instance in C-FUMI, l(xi), are replaced with the latent variables

zi .

F =
(1− µ)

2

N∑
i=1

wi

∥∥∥∥∥
(
xi − zipiTeT −

M∑
k=1

pikek

)∥∥∥∥∥
2

2

+
µ

2

M∑
k=1

∥ek − µ0∥22 +
µ

2
∥eT − µ0∥22 +

M∑
k=1

γk

N∑
i=1

pik (2-15)

29

E [F] =
∑
zi∈{0,1}

[
(1− µ)

2

N∑
i=1

wiP
(
zi |xi,Θ(t−1)

)∥∥∥∥∥xi − zipiTeT −
M∑
k=1

pikek

∥∥∥∥∥
2

2

]

+
µ

2

M∑
k=1

∥ek − µ0∥22 +
µ

2
∥eT − µ0∥22 +

M∑
k=1

γk

N∑
i=1

pik (2-16)

The latent variables for each data point, zi , are unknown and must be estimated using

Equation (2-16) during the Expectation step (E-step) of the algorithm. In Equation (2-16),

Θ(t) is the set of parameters at the current iteration t. P(zi |xi,Θ(t−1)) is the probability

of individual points having any proportion of target or non-target in them. The other terms

of Equation (2-16) are the same as from the objective function in Section 2.1.4.1. The

P(zi |xi,Θ(t−1)) is determined using the previous iterations parameters and the constraints

which follow in Equation (2-17).

P(zi |xi,Θ(t−1)) =



e−βrb if zi = 0,Li = 1

1− e−βrb if zi = 1,Li = 1

0 if zi = 1,Li = 0

1 if zi = 0,Li = 0

(2-17)

where β is a scaling parameter and rb =
∥∥∥xi −∑M

k=1 pikek

∥∥∥2
2
. rb represents the residual error

between a datapoint and the background prototypes. By analyzing the constraints we can see

that when a data point from a positive bag, Li = 1 is truly a non-target, it should have a low

residual error, causing the P(zi = 0|xi,Θ(t−1)) = e−βrb → 1. Furthermore, when the data point

is truly a target, the residual error should be high and P(zi = 1|xi,Θ(t−1)) = 1 − e−βrb → 1.

When instances from a negative bag are considered, Li = 0, it is known that the instances

must be truly non-target and the probabilities are set to their respective 0 or 1 value. With this

in place, the E-step can be computed.

30

The Maximization step (M-step) is done by optimizing Equation (2-16) for the unknown

parameters given the E-step’s current expectation values of the latent variables. The

parameters that are optimized are the prototypes, ek, and their proportion values, pik . Lastly, in

the M-step, if their are similar prototypes, these prototypes are pruned to reduce the number of

prototypes needed to represent the data.

By using the EM algorithm, E-FUMI is able to estimate the instance-level labels and work

within a MIL framework. This allows for a greater uncertainty of your data and only requires a

region of data to be specified as having an existing target, not necessarily which points within

that region contain a target or not.

2.1.5 Multiple Instance Adaptive Cosine Estimator/Spectral Match Filter

The Multiple Instance Adaptive Cosine Estimator (MI-ACE) and Multiple Instance

Spectral Match Filter (MI-SMF) were originally proposed by Zare et al. (2018) to solve

common problems with performing target detection using detection metrics for various

applications. The two detection metrics that these algorithms make use of are the Adaptive

Cosine Estimator (ACE) and the Spectral Match Filter (SMF). To use these detection metrics

a target signature must be known prior to performing detection. Techniques to estimate

target representatives can be measured in a laboratory setting, but are often unrealistic and

not representative of a target in various conditions and environments. Alternatively, a target

representation may be extracted directly from the data itself. Often times when this is done,

the extracted representation does not contain meaningful features to differentiate it from

the background and may not provide the desired performance. This is because the extracted

representation is in it’s original data subspace, which may not provide relevant features to

discriminate it from the background. To handle this MI-ACE and MI-SMF apply a data

transformation known as whitening to transform the data to have zero mean and unit variance

with respect to the background data. This transforms the data so that the remaining features

have equal weight and should not contain features that come from the background of the data.

31

Lastly, it is often times difficult or even impossible to extract a target representation

from a dataset. For example with hyperspectral data, the target signature is often times at

the subpixel level so it is impossible to extract the exact desired representation from the data.

Furthermore, in the context of explosive hazard detection, the exact boundaries of an explosive

hazard’s response within a physical sweep is impossible to obtain, and thus determining where

to extract a target representation is nonviable. The MI-ACE and MI-SMF algorithms address

these problems and are able to learn a target signature that is optimal for the ACE and SMF

detection metrics respectively. By using MI-ACE and MI-SMF, a more true representation of a

target signature can be learned.

MI-ACE and MI-SMF follow the multiple instance learning framework where the labels

of the data are at the bag level. With this, let X = {x1, ..., xN} be a training dataset with

each sample, xi being a vector with dimensionality D. The data is grouped into J bags

B = {B1, ...,BJ} with labels, L = {L1, ...,LJ}, where Lj ∈ {0, 1}.

A bag is considered positive, B+j , with label, Lj = 1, when there exists at least one

instance, xji, in bag j that is from the target class, lji = 1, seen in Equation (2-18).

Additionally, a bag is considered negative, B−
j , with label Lj = 0, if all instances in bag j

are from the background class, lji = 0, seen in Equation (2-19). The number of instances in

both positive and negative bags is variable.

if Lj = 1, ∃xji ∈ B+j s.t. lji = 1 (2-18)

if Lj = 0, ∀xji ∈ B−
j , lji = 0 (2-19)

With this formulation, the goal of MI-ACE and MI-SMF is to estimate a target signature,

s, that maximizes the detection statistic of the target instances in the positive bags while

minimizing the detection statistic of all negative instances. This can be accomplished by

32

maximizing the objective shown in Equation (2-20),

argmax
s

1

N+

∑
j :Lj=1

D(x∗j , s)−
1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

D(xi, s) (2-20)

where N+ is the number of positive bags, N− is the number of negative bags, and N−
j is the

number of instances in negative bag j . x∗j is the positive instance selected from bag j that

is most like the target signature, s. This is known as the bag representative and is shown in

Equation (2-21).

x∗j = arg max
xi∈B+j

D(xi, s) (2-21)

The two detection statistics are SMF and ACE. SMF, shown in Equation (2-22), is the

projection of a test sample, x, onto a known target signature, s, in a whitened coordinate

space (Kraut and Scharf, 1999), (Kraut et al., 2001), and (Nasrabadi, 2008). The whitening

is done using the background covariance, Σ−1
b , and background mean, µb, to transform the

background to have zero mean and a uniform, unit variance. Finally, it can be seen that the

statistic is normalized by the target signature in the whitened coordinate space. With this, not

only does the projection of the test sample onto the target signature affect the statistic, but

the magnitude of the test sample will additionally affect the statistic.

DSMF (x, s) =
sTΣ−1

b (x− µb)√
sTΣ−1

b s
(2-22)

ACE shown in Equation (2-23), is also the projection of a test sample, x, onto a known

target signature, s, in a whitened coordinate space (Kraut and Scharf, 1999), (Kraut et al.,

2001), and (Basener, 2010). Again, the whitening is done using the background covariance,

Σ−1
b , and background mean, µb, to transform the background to have zero mean and a

uniform, unit variance. The difference here is that ACE is normalized by not only the target

signature, s, but the whitened test sample, x, as well. With this, contrary to SMF, the

33

magnitude of the test sample will not affect the statistic, and only the shape of the feature

vector contributes to the statistic.

DACE(x, s) =
sTΣ−1

b (x− µb)√
sTΣ−1

b s
√
(x− µb)TΣ

−1
b (x− µb)

(2-23)

These detection statistics can be rewritten to allow for better notation. This is shown in

the following:

DACE(x, s) =
sTΣ−1

b (x− µb)√
sTΣ−1

b s
√
(x− µb)TΣ

−1
b (x− µb)

(2-24)

=
sTUD− 1

2D− 1
2UT (x− µb)√

sTUD− 1
2D− 1

2UT s

√
(x− µb)TsTUD

− 1
2D− 1

2UT (x− µb)
(2-25)

=

(
ŝ

||̂s||

)T(
x̂

||x̂||

)
(2-26)

= ˆ̂s
T ˆ̂x (2-27)

where x̂ = D− 1
2UT (x−µb), ŝ = D

− 1
2UT s, U and D are the eignenvectors and eigenvalues

of the background covariance, Σ−1
b , respectively, ˆ̂s = ŝ

||̂s|| , and
ˆ̂x = x̂

||x̂|| . In this case, the

notation for ACE has been rewritten, but the same steps can be applied to SMF and rewritten

except that x̂ would be used instead of ˆ̂x in the SMF version of Equation (2-27).

To estimate the target signature, the objective function in Equation (2-20) is maximized.

To accomplish this, the algorithm is broken up in to two primary steps, initializing a target

signature, and then optimizing that signature using one target from each positive bag, also

known as the bag representative, x∗j . To initialize the target signature, the objective function

is computed for all of the positive instances and which ever instance provides the largest

objective function becomes the initialized target signature. Although this instance may provide

the highest objective function value, it may not be optimal for all of the positive instances

34

within the data. So considering this, optimization is done using the update equation shown in

Equation (2-28). This is derived from the associated Lagrangian problem.

ˆ̂s =
t

||t||
where t =

1

N+

∑
j :Lj=1

ˆ̂x∗j −
1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

ˆ̂xi (2-28)

To optimize the initialized signature, the signature, ˆ̂s, is iteratively updated using Equation

(2-28). In each iteration, the current bag representatives, x∗j , are determined given the current

estimated target signature. The bag representatives are averaged and then the average of the

background samples is subtracted away. Finally the target signature is normalized and the

updated target signature has been computed. The average background will not change from

iteration to iteration so this term can be precomputed.

The algorithm pseudocode is provided below:

Algorithm 1 MI-SMF/MI-ACE

1: Compute µb and Σb
2: Subtract the background mean and whiten all instances, x̂ = D− 1

2UT (x− µb)
3: if MI-ACE then
4: normalize: ˆ̂x = x̂

||x̂||
5: end if
6: Initialize ˆ̂s, with the instance in a positive bag that maximizes the obj. fun., Equation

(2-20)
7: repeat
8: Update the bag representatives, x∗j , for each positive bag, B+j , using Equation (2-21)

9: Update ˆ̂s using Equation (2-28)
10: until Stopping Criterion Reached
11: return Normalized De-whitened target signature, s = t

||t|| , where t = UD
− 1
2ˆ̂s

2.1.6 Multiple Instance Hybrid Estimator

The Multiple Instance Hybrid Estimator (MI-HE) algorithm learns multiple target

signatures and multiple background signatures, making it the most similar to the proposed

algorithms in this thesis. The MI-HE algorithm aims to maximize the objective function in

Equation (2-29), (Jiao and Zare, 2017), (Jiao et al., 2018). Namely, MI-HE wants to maximize

the probability that positive bags are labeled positive and negative bags are labeled as negative.

35

Since MI-HE works within the multiple instance framework, the objective function can be

simplified to only need to maximize a single instance from each positive bag. Furthermore,

within the multiple instance framework, every instance from a negative bag is truly a negative

instance. So all negative instances should be labeled as negative. These two modifications of

the objective function are represented in Equation (2-30).

J1 =

N+∏
j=1

Pr(L+j = +|B
+
j)

N−∏
j=1

Pr(L−j = −|B
−
j) (2-29)

=

N+∏
j=1

max
i∈N+j

Pr(l+ij = +|B
+
j)

N−∏
j=1

N−
j∏
i=1

Pr(l−ij = −|x
−
ij) (2-30)

The max operation was adapted by many models to fall into the noisy-OR model

(Srinivas, 1993) that is commonly used in multiple instance learning. The authors modified

this to implement a generalized mean instead of using the max operation. This modification is

shown in Equation (2-31), where the hyperparameter p ∈ [−∞,∞] varies the operation from a

min to a max, respectively.

J2 =

N+∏
j=1

(
1

N+j

N+j∑
i=1

Pr(l+ij = +|B
+
j)
p

) 1
p N−∏
j=1

N−
j∏
i=1

Pr(l−ij = −|x
−
ij) (2-31)

The negative logarithm of Equation (2-31) shown in Equation (2-32) is optimized. An

additional hyperparameter term, ρ, is added to control how much the negative bags affect the

objective function.

− ln J = −
N+∑
j=1

1

p
ln
(1
N+j

N+j∑
i=1

Pr(l+ij = +|B
+
j)
p
)
− ρ

N−∑
i=1

N−
j∑
i=1

ln Pr(l−ij = −|x
−
ij) (2-32)

In order to compute the probabilities of Equation (2-32), the instances are assumed

to come from a sparse linear combination of representatives, like what is done in the FUMI

algorithm (Jiao and Zare, 2015). Let D+ = [d+1 , ...,d
+
T] be the set of T target signatures,

D− = [d−1 , ...,d
−
M] be the set of M background signatures, and α+ij and α+bij be the

36

sparse representation of x+ij , given D and D−, respectively. Instances that are true target

instances, i.e. if Lj = 1, ∃xi ∈ B+j , can be represented as a linear combination of the target

representatives, d+t , the background representatives, d−k , and an error term, ej . This is shown

in Equation (2-33).

xi =

T∑
t=1

αitd
+
t +

M∑
k=1

αikd
−
k + εi , s.t.

T∑
t=1

|αit | ̸= 0 (2-33)

To represent negative instances, i.e. if Lj = 0, ∀xi ∈ B−
j an instance can be represented

as a linear combination of negative representatives, d−k and an error term, ei . This is shown in

Equation (2-34).

xi =

M∑
k=1

αikd
−
k + εi (2-34)

To estimate the probability of an instance x+ij in B
+
j being a target point, the hybrid

subpixel detector was introduced. This estimator is a ratio of distances between the instance

and the target dictionary, D, and the distances between the instance and the background

dictionary, D−. This is shown in Equation (2-35).

Pr(l+ij = +|B
+
j) = exp

(
− β

||x+ij −Dα
+
ij ||2

||x+ij −D−α+bij ||2

)
(2-35)

Additionally, the probability of an instance being a negative instance is modeled as

Pr(l−ij = −|x
−
ij) = exp(−||x−ij −D

−α−
ij ||
2), (2-36)

where the probability is a function of the reconstruction error of the instance, x−ij being

reconstructed as a linear combination of solely the negative dictionary elements in D−.

Lastly, solving for the sparsity vector, α, given a dictionary, D, is modeled as the Lasso

problem, Tibshirani (1996) and Chen et al. (2001), shown in Equation (2-37).

α̂ = argmin
1

2
||x−Dα||22 + λ||α||1 (2-37)

37

2.2 General Clustering Methods

Clustering techniques have been shown to be useful in many applications and often aid in

extracting additional information about data that can be used in other methods. In Sections

2.2.1 - 2.2.3 a brief review of K-Means, Fuzzy C-Means (FCM), and Gaussian Mixture Models

(GMM) are provided. These three clustering methods are used in the proposed multiple target

multiple instance adaptive coherence estimator.

2.2.1 K-Means

The K-Means clustering algorithm clusters data in to C clusters, specified by the user. To

perform clustering, the K-Means algorithm minimizes the following objective function,

J =

C∑
j=1

N∑
i=1

||cj − x(j)i ||
2 (2-38)

where N is the number of samples that belong to cluster j , x(j)i is a sample from cluster j , and

cj is the center of cluster j (MacQueen et al., 1967). This objective function is assuming a

Euclidean distance measure is used, but alternative distance measures can be used. By deriving

the update equations for both the labels and the cluster centers it can be shown that the

K-Means algorithm is a special case of the Expectation Maximization algorithm. In the E-Step,

the assignment for a data point, xi, is determined by finding the cluster center that is closest

to that data point. In the M-Step, each cluster center is updated using the data points that

belong to that cluster. To update a cluster center, cj, the average of all of the samples that

belong to that cluster is computed and set to be the new cluster center. This is shown in

Equation (2-39), where N is the number of data points in the j th cluster.

cj =
1

N

N∑
i=1

x
(j)
i (2-39)

2.2.2 Fuzzy C-Means

The Fuzzy C-Means (FCM) clustering algorithm is similar to K-Means clustering except it

uses a soft “fuzzy” membership instead of a hard, crisp membership for data points in clusters.

38

The algorithm minimizes the following objective function,

argmin
C

C∑
j=1

N∑
i=1

µmij ||cj − xi||2, 1 ≤ m <∞ s.t.
C∑
j=1

µij = 1 ∀i (2-40)

where m is a hyperparameter known as the fuzzifier that controls the fuzziness or how soft

the membership labels are (Peizhuang, 1983). The larger the fuzzifier, the more fuzzy. The

smaller the fuzzifier, the more crisp FCM becomes, and the more it is like K-Means. C is the

number of clusters, N is the number of instances, cj is the center for the j th cluster, and µij is

the membership for the i th instance, xi, corresponding to the j th cluster.

To update the cluster centers, similarly to K-Means, the weighted average of the points in

a cluster are computed, where the weight is the membership of the datapoint to the j th cluster.

This is shown below in Equation (2-41).

cj =

N∑
i=1

µmij xi

N∑
i=1

µmij

(2-41)

In Equation (2-42) the update equation for the memberships of individual data points is

shown. To update the membership of the i th datapoint to the j th cluster we can see that it

is related to the distances to the j th cluster and the other clusters. Namely, the ratio of the

distance to the j th cluster over the sum of the distances to all other clusters raised to the 2
m−1

is used to compute the membership. So this can be interpreted that the membership for the j th

cluster is proportional to the distance to the j th cluster center cj , over the distances to all of

the other cluster centers.

µij =
1

C∑
k=1

(
||xi−cj||
||xi−ck||

) 2
m−1

(2-42)

2.2.3 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a generative model that fits Gaussian distributions

to data and can be used for clustering (Murphy, 2013). Like K-Means and Fuzzy C-Means,

39

the GMM algorithm makes use of the Expectation Maximization (EM) optimization strategy

to update the parameters of the model. One of the primary differences between these is that

GMM is a generative model. So instead of using distances to determine the clusters, it uses

multivariate Gaussian distributions and fits them to the data using probability to form clusters.

With this comes some other differences like the fact that clusters do not need to be spherical

in the feature space. The distributions can have different variances along different dimensions

or a full covariance. This is one of the biggest benefits to GMM and allows for data to have

different variances in different dimensions and still be clustered correctly.

A Gaussian mixture model is represented as a sum of weighted Gaussian distributions over

data and is shown in Equation (2-43).

P(x) =
C∑
k=1

πkN (x|µk,Σk) s.t. πk ≥ 0 and
C∑
k=1

πk = 1 (2-43)

where πk is the weight for the k th Gaussian, and µk and Σk are the mean and covariance for

the k th Gaussian distribution respectively. To simplify notation, θk will be used to represent the

parameters µk and Σk for the k
th Gaussian distribution

In order to fit the data, most often an EM approach is done to determine the update

equations. EM is an approach that helps solve for complex likelihood equations. In EM, an

observed data likelihood is the likelihood that would like to be solved shown in Equation

(2-44).

Lobserved =

N∑
i=1

ln
C∑
k=1

πkP(xi|θz) (2-44)

In order to solve Equation (2-44), latent variables are used and create the complete

likelihood shown in Equation (2-45). Where zi is the missing latent variable corresponding

to which component the data point xi belongs to. Then, taking the log of the complete

likelihood, simplifies Equation (2-45) to a form that can be optimized, shown in Equation

(2-46).

40

Lcomplete = ln
N∑
i=1

P(xi|θz)P(zi) (2-45)

=

N∏
i=1

N (xi|θzi)πzi (2-46)

To perform EM, two steps are done the expectation step and the maximization step. In

the expectation step, the probability of a datapoint corresponding to each Gaussian component

is computed. In other words, the Gaussian component a data point is expected to correspond

to is computed given the current parameters of the Gaussian components. The computation

for this is shown in Equation (2-47).

P(zi |xi,θ(t)) =
π(t)zi P(xi|θ

(t)
zi , zi)

C∑
k=1

π(t)k P(xi|θ(t)k , k)
(2-47)

Equation (2-47) shows that the updated probability of belonging to a specific component

is the ratio of the weighted probability of belonging to that component over all of the other

components weighted probabilities, where the weight is the current membership of the

sample to that component at iteration t. The individual probabilities of belonging to a

Gaussian component can be computed directly using the sample, xi, and the parameters of the

components, θ(t), at iteration t.

In the maximization step, the Gaussian components are maximized given the current

iteration’s expected probability that the data points belong to a certain component. To update

the Gaussian components, the means and covariances are updated for each component.

To update the means, Equation (2-48) is used. It is seen here that, very similarly to Fuzzy

C-Means, the means of the distribution are computed as a ratio of the weighted mean of the

data points, where the weight is the probability of a data point belonging to that component.

So like FCM, it is a weighted mean, except in GMM, the weight corresponds to the probability

instead of the membership associated with FCM.

41

µk =

N∑
i=1

P(zi = k |xi,θ(t))xi
N∑
i=1

P(zi = k |xi,θ(t))
(2-48)

To update the covariances of the Gaussian components, the derivation of the update

equation shows a very similar result as the means. The covariance update equation, shown in

Equation (2-49), shows that the updated covariance for the k th component is the covariance

matrix of the data with respect to the mean of the component, weighted by the ratio of

the probability of those data points belonging to the k th component over the probability of

belonging to all of the components.

Σk =

N∑
i=1

P(zi = k |xi,θ(t))(xi − µk)(xi − µk)
T

N∑
i=1

P(zi = k |xi,θ(t))
(2-49)

Lastly, during the maximization step, the latent variables must also be updated. By using

the constraints πk ≥ 0 and
∑C
k=1 πk = 1 a Lagrangian problem can be solved for the latent

variables. If the Lagrangian is solved and the corresponding Lagrangian multiplier is substituted

in, the resulting solution shown in Equation (2-50), is obtained.

πk =

N∑
i=1

P(zi = k |xi,θ(t))

C∑
k=1

N∑
i=1

P(zi = k |xi,θ(t))
(2-50)

This shows that the weight of each Gaussian component is updated by computing the

probability of all of the data points belonging to that component divided by the probability of

all of the data points belonging to all of the components.

2.2.4 Summary

With the literature of these three methods provided, it can be seen that these three

clustering approaches cluster data very similarly. It is seen that Fuzzy C-Means is an

extension of K-Means where the cluster memberships are no longer crisp, but rather soft,

42

fuzzy memberships. Both K-Means and Fuzzy C-Means are solved with an iterative approach

that performs alternating optimization very similar to the EM optimization strategy that the

Gaussian Mixture Model makes use of. Finally, it can be seen that the Gaussian Mixture Model

is expected to perform similarly to Fuzzy C-Means, except that it can allow for clusters to be

ellipsoidal instead of spherical due to the addition of the covariance in the GMM algorithm.

This shows that although Fuzzy C-Means is not a probabilistic model while GMM is, they are

computed very similarly except that FCM requires spherical clusters.

2.3 MIL Clustering for Dictionary Learning

In some applications of target detection, a target signature may not have one form across

different conditions. For example, this can occur in hyperspectral data due to variations

in lighting conditions or inner class variations. This can also occur in the Army subsurface

explosive hazard dataset that I worked on throughout my research at the University of Florida.

Explosive hazards can vary in size, orientation, depths, and surrounding soil type. This induces

a need to learn multiple signatures. The proposed methods in this document will attempt to

tackle this problem.

A number of the proposed techniques utilize clustering before initialization to obtain

additional information about the data. By clustering the data, the proposed method, multi

target MI-ACE/SMF, will have additional information about the data and how the bags relate

to each other. In Sections 2.3.1 - 2.3.3 a number of multiple instance learning and multiple

instance regression clustering techniques are reviewed, some of which are used in the proposed

methods.

2.3.1 Multiple Instance Cluster Regression

Multiple Instance Cluster Regression (MI-ClusterRegress) uses clustering to aid in

developing regression models for a multiple instance regression (MIR) problem (Wagstaff

et al., 2008). In MIR, the data format is similar to MIL, except that instead of a bag of data

corresponding to either a positive or negative label, a particular bag corresponds to a particular

43

value. So the goal of MIR is to train a regression model, or multiple regression models, that

can predict the labels, particular values, of new bags from their contents.

MI-ClusterRegress attempts to create a structured form of the data so that regression can

be applied using individual samples with corresponding scalars. MI-ClusterRegress assumes that

the data in each bag comes from a number of distinct distributions. With this assumption,

MI-ClusterRegress is able to learn the distributions through clustering, and then apply a

regression model to each distribution. By clustering the data, this approach is able to map

the instances in the bags to a particular distribution. Then these memberships can be used to

create exemplar points which in return can be used to develop individual regression model for

each distribution. Without the addition of the clustering, it can be difficult to determine the

correct scalar label for each instance in a bag because the instance level label is not provided in

the MIR framework.

The algorithm’s main assumption and what helps solve this problem is that the instances

in each bag are drawn from underlying distributions that can be clustered. It is also assumed

that one cluster is responsible for each bag’s regression label. To solve this problem, the

instances from each bag are reduced to exemplar points which are the representation points

of that bag’s instances for a particular cluster. So if there are C clusters, each bag will have

C exemplar points, one for each cluster. These exemplar points are then used for training

regression models.

An exemplar point, B̂kj , is a weighted average of the instances in a bag, where the weights

correspond to the membership of that instance to the corresponding cluster. Namely, the

exemplar point for cluster k within bag j , denoted as B̂kj , is the average of all items in bag

j weighted by their memberships in cluster k , denoted by R. Then, using the exemplars,

a regression model is fit to each cluster k , using the exemplar points from each bag that

correspond to cluster k . To determine the membership relevance, R, for each instance i ,

Equation (2-51), (2-52), and (2-53) are used.

44

ri = P(xi ∈ ck |Bj;θck),∀i (2-51)

z :=

N+j∑
i=1

ri (2-52)

Ri :=
ri
z
,∀i (2-53)

Here, xi ∈ ck means that instance xi was generated by the distribution associated

with cluster ck . This probability in Equation (2-51) can be computed using the learned

parameters, θk, from each of the Gaussian mixture model distributions. Then a normalization

term z is computed for the bag, Bj, as the sum of all memberships from bag, Bj. Here, N
+
j

is the number of instances in bag j . Lastly, each instance’s membership is normalized by z

to form the relevance, Ri , of an instance belonging to the k th distribution in bag j . In the

original paper, the authors chose to use a Gaussian mixture model for clustering, but the only

requirement for clustering is that the clusters produce C generative models that can produce a

membership for all of the instances.

The overall algorithm psuedocode has been provided below:

Algorithm 2 MI-ClusterRegress Algorithm
Inputs: Bagged Data Bj=1,...,N, labels Y, number of clusters C
Outputs: Regression parameters γ′ and cluster parameters θ′

1: X := ∪i=1,...,N(Bj) //Group all data together regardless of bag structure
2: θi=1,...,C := Cluster(X,C) //Cluster all items into C clusters
3: for j = 1 to N do
4: for k = 1 to C do
5: R := Relavance(Bj,θk) //Compute memberships for instances in Bj
6: B̂kj := B

jR //Construct Exemplar for bag Bj in cluster k
7: end for
8: end for
9: for k = 1 to C do
10: γk := Regress({B̂kj }j=1,...,N ,Y) //Regression model for cluster k
11: end for
12: [γ′,θ′] := Select({γk,θk}k=1,...,C ,Y) //Select best local model that maps bags to labels

45

2.3.2 Fuzzy Clustering of Multiple Instance Data

Fuzzy Clustering of Multiple Instance Data (FCMI) makes use of the previous work

done by Maron and Lozano-Pérez (1998), and extends it to identify dense regions of the

feature space with maximal correlation to positive instances and minimal correlation to

negative instances (Karem and Frigui, 2015), (Karem and Frigui, 2016). By creating a

new Multi-target concept Diverse Density metric (MDD), FCMI is able to identify multiple

target concepts simultaneously. Namely, the objective of FCMI is to identify K target

concepts, T = {t1, ..., tk, ...tK} that correspond to regions of the features space with as

many positive instances and as few negative instances as possible. The method assumes

there are N bags, B = {B1, ...,Bj, ...BN}, where each bag is assumed to have a label

as positive or negative. Where a positive labeled bag, B+ = {B+1 , ...,B+j , ...,B
+
N},

corresponds to a bag having at least one instance from the true target class, and a negative

labeled bag, B− = {B−
1 , ...,B

−
j , ...,B

−
N}, corresponds to a bag with no instances in it

that correspond to the true target class. In each of the bags, signified by j , there are an

unknown number of instances; N+j designates the number of positive instances in bag j ,

and N−
j designates the number of negative instances in bag j . Each instance, xi is signified

by i . Xj = {xj1, ..., xji, ..., xjN+}, and each instance is a D-dimensional feature vector,

xji = {xji1, ..., xjid, ..., xjiD}. To accomplish this, it is assumed that each bag, Bj, belongs to

each target concept, tk, with a fuzzy membership µjk provided the constraints in Equation

(2-54).

µjk ∈ [0, 1] and
K∑
k=1

µjk = 1 (2-54)

Let U = [µjk] be the set of all memberships for all target bag pairs, namely for k =

1, ...,T and j = 1, ...,N. The Multi-target concept Diverse Density (MDD) metric is defined

as

MDD(T,U) =
N∏
j=1

K∏
K=1

µmjkPr(tk|Bj) (2-55)

46

where m is a parameter known as the fuzzifier that controls the fuzziness of the clusters like in

FCM (Peizhuang, 1983). The FCMI algorithm seeks to find the optimal (T,U) that maximizes

the MDD metric in Equation (2-55).

Instead of maximizing Equation (2-55), the negative log-likelihood is taken and minimized.

J(T,U) = −ln(MDD(T,U)) =
N∑
j=1

K∑
k=1

µmjk{−ln(Pr(tk|Bj))} (2-56)

To minimize Equation (2-56) with respect to U, Lagrangian multipliers, Λ, are used with

the second constraint from Equation (2-54). This is shown in Equation (2-57).

J(T,U,Λ) =

N∑
j=1

K∑
k=1

µmjk{−ln(Pr(tk|Bj))} − λj

(
K∑
k=1

µjk − 1

)
(2-57)

Then, assuming the partial densities Pr(tk|Bj) and the columns of U are independent for

all bags j = 1, ...,N, Equation (2-57) can be reduced to N minimization problems shown in

Equation (2-58), where λj is the lagrangian multiplier for the j th lagrangian problem.

Jj(T,Uj,λj) =
K∑
k=1

µmjk{−ln(Pr(tk|Bj))} − λj

(
K∑
k=1

µjk − 1

)
, j = 1, ...,N (2-58)

Finally, by taking the partial derivative of Equation (2-58) with respect to µjk , setting it to

0, and solving for µjk , the update equation for µjk can be obtained. This leads to the following

update equation shown in Equation (2-59) for µjk .

µjk =
−ln(Pr(tk|Bj))

1
m−1

K∑
k=1

−ln(Pr(tk|Bj))
1
m−1

(2-59)

To determine the optimal target concepts, T, FCMI uses the multiple instance framework

and the often used NOISY-OR model (Srinivas, 1993). This can be modeled as such:

47

Pr(tk|Bj) =


1−

N+j∏
i=1

(1− Pr(xji ∈ tk)) if Label(Bj) = 1

N−
j∏
i=1

(1− Pr(xji ∈ tk)) if Label(Bj) = 0

(2-60)

The Pr(xji ∈ tk) can be regarded as the similarity of instance xji to tk. Assuming the

centroids, ck, of the fuzzy cluster represent the target concepts, tk, the probability can be

expressed as

Pr(xji ∈ tk) = exp

(
D∑
d=1

skj(xjid − ckj)2
)

(2-61)

where skj is a scaling vector that weights the individual features of tk and xjk so that the

features that are responsible for discriminating between target and non-target instances are

weighted more heavily and the features that are irrelevant for discriminating have a low weight.

To find the optimal target concepts the optimal cluster centers, ck, and their respective

scaling vector, skj, must be determined. This can be accomplished by holding the memberships

fixed, taking the derivative with respect to the cluster centers and with respect to the scaling

vectors, setting the derivative to zero, and solving for the cluster centers and scaling vectors

respectively. When this is done, the derivation for the update equations for ck and skj are

shown in Equation (2-62) and (2-63).

∂J

∂ck
= −

N∑
j=1

µmjk
Pr(tk|Bk)

× ∂Pr(tk|Bj)
∂ck

= 0 (2-62)

∂J

∂sk
= −

N∑
j=1

µmjk
Pr(tk|Bj)

× ∂Pr(tk|Bj)
∂sk

= 0 (2-63)

To evaluate the probabilities in Equation (2-62) and (2-63), the noisy or model shown

in Equation (2-60) must be considered. The Pr(tk|Bj) depends on whether a bag is positive

or negative, and therefore the optimal clusters and scales will also depend on whether the

corresponding bag is positive or negative. This is expanded out and shown in Equation (2-64)

and (2-65).

48

∂J

∂ck
= −

N+∑
j=1

µmjk
Pr(tk|B+j)

×
∂Pr(tk|B+j)

∂ck
−
N−∑
j=1

µmjk
Pr(tk|B−

j)
×

∂Pr(tk|B−
j)

∂ck
(2-64)

∂J

∂sk
= −

N+∑
j=1

µmjk
Pr(tk|B+j)

×
∂Pr(tk|B+j)

∂sk
−
N−∑
j=1

µmjk
Pr(tk|B−

j)
×

∂Pr(tk|B−
j)

∂sk
(2-65)

Equation (2-64) and (2-65) do not have closed-form solutions. Instead of solving for these

updates directly, an approximated solution using an iterative line search approach is used to

determine the parameter updates. The algorithm pseudocode is provided in Algorithm 3. B+

and B− are the sets of positive and negative bags respectively, K is the number of desired

targets, C are the centers of K target concepts, S are the scales of the K target concepts, and

U are the memberships of all bags in all target concepts.

Algorithm 3 FCMI Algorithm

Inputs: B+, B−, K
Outputs: C, S, U

1: Initialize ck and sk for k = 1, ...,K
2: repeat
3: Update µjk using Equation (2-59)
4: Update C and S using a line search algorithm that minimizes eq. (2-62) and (2-63)
5: until centers do not change or max number of iterations reached
6: return C, S, U

2.3.3 Robust Fuzzy Clustering for Multiple Instance Linear Regression

The Robust Fuzzy Clustering for Multiple Instance Linear Regression (RFC-MILR)

algorithm uses various clustering techniques to add in multiple instance regression problems.

First, fuzzy clustering is used to determine the primary instances of a bag, and secondly

possibilistic clustering is used to identify non-primary instances of a bag (Trabelsi and Frigui,

2018). The combined features and labels are both used for clustering and help to identify

multiple local linear regression models. This algorithm has three main steps. First, shown in

Section 2.3.3.1, fuzzy clustering is used to obtain a membership degree for the instances in

49

each bag to fit local linear regression models. Second, shown in Section 2.3.3.2, a possibilistic

robust clustering method is used to minimize the affect that non-primary instances have on the

local linear regression models. Non-primary instances are those that are not responsible for the

label of the bag. Lastly, shown in Section 2.3.3.3, the properties of the possibilistic model are

used to determine the optimal number of regression models.

2.3.3.1 Initial regression models using fuzzy clustering

The first step of the RFC-MILR is to use Fuzzy C-Means (FCM) to determine membership

values for each sample in a positive bag to obtain an initial estimate of the local linear

regression models. FCM is used to obtain the resulting memberships to identify the primary

instances to train an initial regression model. The generic objective function for FCM with any

distance metric is written as

J =

C∑
j=1

N∑
i=1

(µij)
mdist2ij , (2-66)

which is subject to the constraints in Equation (2-67), and has been previously reviewed in

Section 2.2.2.

µij ∈ [0, 1] ∀i and ∀j ; and
C∑
j=1

µij = 1 ∀i (2-67)

In the originally proposed RFC-MILR, the distance metric, dist2ij , between the cluster

centers and a sample is shown in Equation (2-68), where x′ji = [xji, yj] ∈ RD+1. Any distance

could be used, but Trabelsi and Frigui (2018) decided to use the distance in Equation (2-68)

to give more importance to distances projected on to eigenvectors associated with smaller

eigenvalues.

dist2ij =

D+1∑
d=1

vjk((cj − x′ji) · ejd)2 (2-68)

In Equation (2-68), cj is the center of cluster j , ejd is the d
th unit eigenvector of the

covariance matrix, Σj, of cluster j . Here, vjk corresponds to a weighting vector for each

dimension that controls the amount of distance that the d th dimension contributes to the

total distance. It is computed as the product of all eigenvalues divided by the eigenvalue

50

corresponding to the d th dimension, shown in Equation (2-69). The distance is proportional to

the eigenvalue of each eigenvector that the data is projected on to.

vjk =

[
D+1∏
d=1

λjd

] 1
D+1

λjk
(2-69)

To optimize FCM, an iterative algorithm is performed to alternately update the

memberships, µij , and the cluster parameters, cj and Σj. To update the cluster parameters,

Equation (2-70) and (2-71) are used.

cj =

N∑
i=1

(µij)
mxi

N∑
i=1

(µij)m
(2-70)

Σj =

N∑
i=1

(µij)
m(cj − xi)(cj − xi)T

N∑
i=1

(µij)m
(2-71)

These are the same update equations as shown in Section 2.2.2 for FCM using Euclidean

distance, but now a covariance, Σj, is used because of the distance metric selected in

FRC-MILR. The analysis of Equation (2-70) and (2-71) are the same as in Section 2.2.2,

except a different distance metric is used. So it can be seen that the cluster center, cj, is

still the weighted mean of the data, xi, weighted by their corresponding membership, (µij)
m,

to cluster j . As well, the covariance for cluster j is calculated as the weighted average of

the covariance matrix corresponding to cluster j . FCM is computed on all of the data, for a

few number of iterations, to initialize the clusters and obtain initial regression models. The

regression models will include all of the data, even instances that are non-primary instances.

2.3.3.2 Non-primary instances using possibilistic clustering

The second main step of RFC-MILR is to use Possibilistic C-Means (PCM) to determine

the non-primary instances, the outliers of the bag that do not correspond to the bag’s label to

refine the initialized models. PCM allows the membership of the samples that are considered

51

to be outliers to be close to 0 and the samples that correspond to inliers be close to 1, because

the membership values in PCM are not constrained to sum to 1 across all clusters, µij ∈ [0, 1].

Through this property the desired regression models can be obtained by weighting the training

data of the regression models by their respective possibilistic membership value. It can be seen

that PCM has this property by relaxing the constraints of FCM shown in Equation (2-67), by

having the following objective function which is minimized,

J =

C∑
j=1

N∑
i=1

(µij)
mdist2ij +

C∑
j=1

ηj

N∑
i=1

(1− µij)
m. (2-72)

In Equation (2-72), the ηj parameter is set as a prior to control the cluster resolution, or

alternatively could be updated in each iteration using the distribution of the data in each

cluster.

Like FCM, PCM uses the iterative optimization approach to update the 3 parameters of

the model, µij , cj and Σj. Similarly to how the update equations are derived for FCM, the

update equations can be derived for PCM. The update equation for µij is shown below in

Equation (2-73).

µij =

[
1 +

(
dist2ij
ηi

) 1
m−1
]−1

(2-73)

The update equations for the cluster parameters, cj and Σj, are derived to be the same as

for the fuzzy case, shown in Equation (2-70) and (2-71). It can be seen that Equation (2-70)

and (2-71) are the same update equations used for FCM. This is because the membership

constraint only affects the update equation for memberships. The membership constraints do

not affect the parameters of the clusters, only the membership values are used to update the

parameters of the clusters, cj and Σj.

Once the cluster centers and covariances no longer change more than some stopping

threshold, PCM has converged.

52

2.3.3.3 Optimal number of regression models

A technique is then used to merge similar clusters by taking advantage of a useful property

of PCM. Since PCM does not constrain the memberships to sum to 1, there can be several

similar or identical clusters. The authors initialize an over estimate of clusters needed for

regression, and then after PCM has converged, this property is exploited to merge similar

clusters. To merge two clusters m and n the following equation is used, where ΘM is a

merging threshold hyperparameter.

N∑
i=1

|µim − µin|

N∑
i=1

|µim|+
N∑
i=1

|µin|
< θM (2-74)

It is assumed that the underlying regression model is linear and only requires one cluster

to appropriately perform regression. So if the algorithm produces more than one cluster after

merging has taken place, an optimal cluster, p, is selected using Equation (2-75). Here C ′ is

the number of clusters that remain after merging and εj is the sum of distances between the

j th cluster center and all of the samples weighted by their membership.

p = arg min
j=1,...,C ′

{
εj =

N∑
i=1

(µij)
mdist2ij

}
(2-75)

Then, the primary instances of cluster p are extracted using Equation (2-76) and stored

in P. Here, the set of primary instances, P, are the inliers of cluster p. These instances are

determined by checking if the membership, µp, of instance xi is greater than a hyperparameter

threshold θp which is typically set to 0.1.

P = {xi, i = 1, ...,N | µp > θp} (2-76)

These instances, x ∈ P, as well as the parameters of the cluster, cp and Σp, are used

to determine the final regression model parameters. Let x = [x1, ..., xd , y] ∈ P and emin =

53

[e1min, ..., e
d+1
min] be the eigenvector associated with the smallest eigenvalue, λmin of Σp. Since x

belongs to cluster p, this leads to the property that

emin · x = emin · cp . (2-77)

Decomposing x into it’s feature vector and its corresponding label y , Equation (2-78) is

obtained.

eD+1min y +

D∑
d=1

edminxd = emin · cp (2-78)

Then, solving for y provides the solution to the regression model for the optimal cluster, p.

y = f (x) =
emin · copt
eD+1min

−
D∑
d=1

edmin
eD+1min

xd (2-79)

This regression model is used for predicting labels for unknown bags, Bt = [xt1, ..., x
t
N]. To

perform prediction, first, it is determined which primary instance in P is closest to all of test

instances, xtn. The label of the primary instance that is determined to be the closest to the test

instance is assumed to be a good initial estimate for the label of the test instance, xtn. This

initial estimate is used for all of the instances in the test bag, and PCM is run to determine the

possibilistic memberships of the test instances. The test instance with the largest possibilistic

membership is determined to be the primary instance of the test bag. This is modeled by

Equation (2-80).

xtprim = {xtk | µk = max
i=1...N

{µi}} (2-80)

Finally, a test bag, Bt, is labeled using the regression value of the primary instance,

y(Bt) = f (xtprim). If desired, more than one primary instance can be used to label a test bag.

The same process would be done, but the label of the test bag, Bt, would become the average

of all of the selected primary instances’ regression values.

54

CHAPTER 3
PROPOSED METHODS

3.1 Multi-Target Multiple Instance Adaptive Cosine Estimator/Spectral Match
Filter

The objective of the Multi-Target Multiple Instance Adaptive Cosine Estimator (Multi-Target

MI-ACE) and Multi-Target Multiple Instance Spectral Match Filter (Multi-Target MI-SMF)

algorithms is to learn a dictionary of multiple target representations, focusing on maximizing

detection of those targets against a background class. This algorithm fits the Multiple Instance

Learning (MIL) framework proposed by Dietterich et al. (1997) and assumes the data is

grouped in to bags with bag level labels. With this, let X = {x1, ..., xN} be training data

with each sample, xi being a vector with dimensionality D. The data is grouped into J bags

B = {B1, ...,BJ} with labels, L = {L1, ...,LJ}, where Lj ∈ {0, 1}.

A bag is considered positive, B+j , with label, Lj = 1, when there exists at least one

instance, xji, in bag j that is from the target class, lji = 1, seen in Equation (3-1). Additionally,

a bag is considered negative, B−
j , with label Lj = 0, if all instances in bag j are from the

background class, lji = 0, seen in Equation (3-2). The number of instances in both positive and

negative bags is variable.

if Lj = 1, ∃xji ∈ B+j s.t. lji = 1 (3-1)

if Lj = 0, ∀xji ∈ B−
j , lji = 0 (3-2)

The objective function of the original MI-ACE algorithm (Zare et al., 2018) shown in

Equation (3-3) has been extended to include multiple target signatures in a dictionary, S, as

shown in Equation (3-4).

argmax
s

1

N+

∑
j :Lj=1

D(x∗j , s)−
1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

D(xi, s) (3-3)

55

max
S

1

N+

∑
j :Lj=1

max
sk∈S
(D(x∗j ,k , sk))−

1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

max
sk∈S
(D(xi , sk)) (3-4)

Here N+ and N− are the number of positive and negative bags respectively, N−
j is the number

of instances in negative bag j , and sk is the k
th target signature in the dictionary, S, shown in

Equation (3-5).

S =

[
s1 s2 ... sK

]
(3-5)

x∗j,k is known as the positive bag representative and is the instance in the j th positive bag that

is the most similar to the k th estimated target signature, sk. This is shown in Equation (3-6).

x∗j ,k = arg max
xi∈B+j

D(xi , sk) (3-6)

D(x, s) represents the similarity between two feature vectors x and s. The similarity

metrics used are the Adaptive Cosine Estimator (ACE) and the Spectral Match Filter

(SMF), which have been reviewed in Section 2.1.5. ACE and SMF are both whitened by

the background and normalized by the signatures being compared. ACE normalizes the inner

product by the magnitude of both signatures, whereas SMF only normalizes the inner product

by the target signature. Moving forward, the use of the double hat will signify a whitened and

normalized target signature, ˆ̂s, or sample, ˆ̂x using ACE. The use of a single hat will signify a

whitened and normalized target signature, ŝ, or sample, x̂ using SMF.

The objective function has been modified to include multiple target signatures. By using a

max operation across the detection of the target signatures and positive bag representatives in

the first term, this allows each target signature to focus on classifying a particular variation or

target type of interest. This way, the learned target signatures can fill in the total target class

data space and each target signature can focus on estimating an individual target subspace

of interest instead of trying to learn a single target representative for all target variations.

Additionally, the max operation in the second term was used for consistency and to penalize

the algorithm for learning any target signature that is like the background.

56

The Multi-Target MI-ACE and Multi-Target MI-SMF algorithms have two primary steps,

first K target signatures are initialized and then the initialized signatures are optimized over

the training data. Three categories of initialization techniques are proposed and included

in Sections 3.2 - 3.4 known as the greedy approach, the uniqueness term approach, and

the clustering approach. Additionally, two optimization techniques follow, the weighted

optimization approach and the uniqueness term approach.

3.2 Greedy Initialization Approach

To learn the dictionary of targets, S, the naive brute force approach would be to try

every possible instance from the positive bags, referred to as target candidates, and determine

which combination of those target candidates would maximize the objective function. This

approach is unfeasible though because as the number of targets, K , increases, the algorithm

complexity grows rapidly. This approach would grow rapidly with the number of targets, K ,

at a rate of
(
N+I
K

)
, where N+I is the total number of positive instances. This is because every

combination of target candidates must be tested. As well the positive bag representatives

must be determined for each of the target candidates to calculate the objective function. This

operation alone is O(N+I) and would need to be computed for every target candidate, which

makes this process O((N+I)
2). When you combine the computation complexity of computing

the objective function with how many times this would need to occur, the complexity becomes

O
((
N+I
k

)(
N+I
)2)

. This makes this approach unfeasible and therefore other approaches have

been explored to get around this. The algorithm pseudocode for the Greedy approach is

provided in Algorithm 4.

57

Algorithm 4 Greedy Initialization Method

1: Compute µb and Σb

2: Subtract the background mean and whiten all instances, x̂ = D− 1
2UT (x− µb)

3: if Multi-Target MI-ACE then

4: Normalize: ˆ̂x = x̂
||x̂||

5: x = ˆ̂x

6: else

7: x = x̂

8: end if

9: Compute inter target candidate similarity matrix: Tarsim, Equation (3-7)

10: Compute target candidate to background similarity matrix: BGsim, Equation (3-8)

11: for k = 1 to K do

12: for i = 1 to N+I do

13: Ji = Compute Objective Function(Tarsim(i,:), BGsim(i,:), S), Equation (3-4)

14: end for

15: Extract signature with largest objective value: sk = argmax
xi
(Ji)

16: S = add(sk)

17: end for

18: return Dictionary, S

One method that is proposed, instead of trying every possible combination, initializes

target signatures in a greedy manner. The method greedily selects the target candidate that

maximizes the objective function until K target signatures have been initialized. It should

be noticed that the objective function in Equation (3-4) includes a max operation across the

target signatures. To compute the objective function at each of the K target iterations, the

previously initialized target signatures are used to compute the objective function. The max

operation is included to prioritize the target types in the positive bags that have not been

included yet. This occurs because the target types that exists in bags that have not included

58

a target signature will increase the objective function. Furthermore, the objective function

will not increase if the method selects the same initialized signature. This max operation

encourages the algorithm to select target signatures that exists in all of the positive bags.

One drawback to this approach is that some target signatures are more like the

background than others. If a target signature is more like the background, it is possible

that it will actually provide a decrease in objective function if it is included. It has been noticed

that even though this technique encourages learning all of the target types, if a target type

is similar to the background, such that it will decrease the objective value, then the method

will not include this target signature. The algorithm will avoid including a target signature if it

causes a net decrease to the objective function.

Finally, it was noticed that there were operations that were used across multiple iterations

of initializing a target. Namely, the similarity between the positive instances and similarity

between the positive and negative instances was being computed during each of the K

iterations. To exploit this recurrence and save computational costs, these values are stored in

two matrices, Tarsim and BGsim. The former stores the positive instance to positive instance

similarities and the later stores the positive instance to negative instance similarities. Instead

of recomputing the similarity of every target candidate to the other positive and negative

instances, the algorithm can perform a matrix lookup to save computation time. These matrix

computations are shown in Equation (3-7) and (3-8),

TarSim(i , j) = D(xi, xj), ∀(xi and xj) ∈ ∀B+ (3-7)

BGSim(i , k) = D(xi, xk), ∀xi ∈ ∀B+ and ∀xk ∈ ∀B− (3-8)

where D(xa, xb) represents the similarity between xa and xb, computed by ACE or SMF

depending on the algorithm variation used. Tarsim is a matrix that contains all of the similarity

values between each positive instance. BGsim is a matrix that contains all of the similarity

values between each positive and negative instance. Due to the large number of instances in

59

real applications, it is difficult to store this many values in a single matrix, so these matrices

are broken into smaller matrices, one for each bag.

3.3 Uniqueness Term Objective Function Initialization

The uniqueness term objective function initialization makes use of an additional term in

the objective function to promote target uniqueness. It was noticed that certain target types

are more like the background which it difficult to learn those signatures. Regardless of how

many signatures were initialized, the penalty for including those target types caused by the

second term of the objective function, outweighed the increase in objective function from the

first term. The algorithm needed to be encouraged to select different target signatures even

if it meant selecting signatures that were more like the background. Naturally, some target

types are more like the background. To be detected, their corresponding signatures need to be

included in the dictionary of signatures, S. To accomplish this, a uniqueness term was added

to the objective function to penalize the algorithm for initializing similar target signatures. The

uniqueness term is simply the similarity between two target signatures and is shown in Equation

(3-9).

U =
α(
K
2

) K−1∑
k=1

K∑
l=k+1

D(sk , sl) (3-9)

Where sk and sl are learned target concepts, K is the number of targets, and α is a

hyperparameter to weight this term. Analyzing the uniqueness term, it can be seen that it

is the average similarity between all of the combinations of target signatures, weighted by α.

Equation (3-10) shows the modified objective function with the uniqueness term included. It

can be seen that this term is subtracted in the objective function to provide a penalty to the

algorithm if it initializes similar targets.

argmax
s

1

N+

∑
j :Lj=1

D(x∗j , s)−
1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

D(xi, s)−
α(
K
2

) K−1∑
k=1

K∑
l=k+1

D(sk , sl) (3-10)

60

Although the uniqueness term addresses the types of target signatures being initialized, it

does not address how, or the order that these target signatures will be initialized. The issue of

run time complexity stated in Section 3.2 still exists for this method, so the same strategy of

greedily initializing target signatures is employed with this initialization.

3.4 Clustering Initialization Approaches

Additional initialization approaches using clustering methods have been investigated to

determine if either performance or run time can be improved. By using clustering initialization

approaches, the algorithm reduces computation time and obtains cluster centers that represent

regions of the data. With this, the algorithm does not need to search through as many

candidate points to initialize a target signature. Additionally, the initialization technique will

learn a representation of the target signature that is representative of a subspace of the data,

instead of initializing a single instance that is not guaranteed to represent a greater region of

the target class.

3.4.1 K-Means

The first approach, referred to as K-Means, uses the K-Means clustering algorithm

(MacQueen et al., 1967) to group all of the data, regardless of bag structure, into C clusters.

Then, this initialization approach picks the cluster center that maximizes the MI-ACE objective

function as the initialized target signature. This computation complexity is O((N+ + N−)Ci +

CN+), where C is the number of clusters, N+ and N− are the number of positive and negative

instances, respectively, and i is the number of iterations until K-Means converges. The first

term corresponds to K-Means clustering, and the second term corresponds to determining

the cluster centers that maximize the objective function. As long as the number of clusters,

C , and the number of iterations i , remains small, the K-Means approach will have less of a

computational cost than the original initialization method. This way the algorithm only needs

to search through C candidates instead of N+ candidates to initialize a target signature.

61

3.4.2 Ranked K-Means

The second approach, referred to as Ranked K-Means, uses the K-Means clustering

algorithm (MacQueen et al., 1967) to create C clusters, regardless of bag structure. Instead

of using the original objective function to score the cluster centers, a new multiple instance

cluster rank is proposed to further reduce the computational cost. The multiple instance cluster

rank of the k th cluster, is the sum of the proportions of the elements in cluster k . The three

terms of the rank are the proportion of positive bags that have an instance in cluster k , the

proportion of instances in cluster k that came from a positive bag, and the proportion of

instances in cluster k that came from a negative bag. This is formally defined in Equation

(3-11).

RankMIC(k) =

wB
+

(
N
B+
k

NB
+

)
+ w+

(
N+k
N+

)
− w−

(
N−
k

N−

)
+ w−

wB+ + w+ + w− , (3-11)

where NB
+
, N+, N− are the total number of positive bags, positive instances, and negative

instances, respectively. NB
+

k , N+k , N
−
k are the number of positive bags that have at least

one instance in cluster k , the number of positive instances in cluster k , and the number

of negative instances in cluster k , respectively. Finally, the weights wB
+
, w+, and w− are

positive hyperparameter weights that are set based on the prior belief of the distributions of

the constructed positive bags. Equation (3-11) adds w− and is divided by the sum of the

weights to force the rank to be from [0, 1]. If it is believed that the positive bags contain a

majority of positive instances, then the first two weights should be higher than the last weight.

Furthermore, if the positive bags contain a majority of negative instances, the last weight

should dominate to require a minimal number of negative instances belonging to the cluster

center that is initialized.

The computation complexity for this technique is O((N+ + N−)Ci + C), where C is the

number of clusters, N+ and N− are the number of positive and negative instances, respectively,

and i is the number of iterations until K-Means converges. In this initialization technique, the

62

first term, corresponding to K-Means, dominates the complexity. The second term corresponds

to determining the cluster center that maximizes the multiple instance cluster rank. Since

all of the data proportions to compute the rank come straight from the clustering results, no

additional computation complexity is needed to determine the cluster rank for each cluster.

This is an indexed matrix lookup and therefore constant time, and thus not included in the

second term of the computation complexity.

3.4.3 MI-CR

The MI-ClusterRegress algorithm (Wagstaff et al., 2008), shown in Section 2.3.1, clusters

all of the data regardless of bag structure into C Gaussian distributions using a Gaussian

Mixture Model (GMM) (Murphy, 2013). Then, an exemplar point is created in each positive

bag for each of the C distributions. The exemplar point in each bag for the k th distribution,

is a weighted average of the instances in that bag, where each instance is weighted by the

responsibility to the k th distribution. In the original algorithm, these exemplar points are then

used to train C separate regression models to allow each distribution to have their own local

regression model.

This MI-ClusterRegress algorithm has been incorporated into this initialization method,

referred to as MI-CR. In this initialization method, the clustering portion of MI-ClusterRegress,

as well as creating the exemplar points, is used to reduce the number of instances that must be

searched to initialize a target concept. Namely, C × NB+ exemplar points are searched instead

of all N+ positive instances. Additionally, the created exemplar points are a combination of the

instances in a positive bag, so the initialized exemplar point may be better at representing the

variations in target representatives rather than using a single instance as the initialized target

concept.

The computation complexity for MI-CR is O((N+ + N−)Ci + CNB
+
N+), where C is the

number of clusters, N+ and N− are the number of positive and negative instances, respectively,

NB
+
is the number of positive bags, and i is the number of iterations until Expectation

Maximization for GMM converges. The first term corresponds to GMM’s complexity. It can be

63

seen that GMM has an identical complexity as K-Means except the number of iterations, i , is

dependent on the stopping condition threshold hyperparameter. GMM’s complexity is largely

affected by the stopping condition threshold. The second term corresponds to how many

exemplar points are being considered as a potential target signature. For each bag, there are

C exemplar points generated, so a total of C × NB+ exemplar points are generated. Then the

objective value is computed with complexity of N+ for each of the exemplar points. This will

dominate the computation time of MI-CR if there are many bags or many positive instances,

but the computation time can also be largely affected by the stopping condition threshold used

for GMM.

3.5 Original MI-ACE and MI-SMF Optimization Extended for Multiple Targets

The ideal objective function shown in Equation (3-4) is difficult to optimize. Instead the

following objective was optimized and used during the experiments of this thesis, shown in

Equation (3-12).

max
S

1

N+

∑
j :Lj=1

∑
sk∈S

D(x∗j ,k , sk)−
1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

∑
sk∈S

D(xi , sk) (3-12)

The optimization steps done in the original MI-ACE and MI-SMF algorithms, reviewed

in Section 2.1.5, can be extended to update each target signature individually, shown in the

update Equation (3-13). This optimization update equation can be applied to the initialized

targets, but does not address the possibility of positive bags containing different target

types. This is an issue because of how a target signature would be optimized. It can be

seen in Equation (3-13) that the updated target signature is the average of the positive bag

representatives minus the average of the background.

ˆ̂sk =
ˆ̂t∥∥∥ˆ̂t∥∥∥ where ˆ̂t =

1

N+

∑
j :Lj=1

ˆ̂x
∗
j ,k −

1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

ˆ̂xi (3-13)

Since Equation (3-13) uses a positive bag representative, ˆ̂x
∗
j ,k , from every j th positive

bag, the optimization will include bags that may not contain the target type being optimized.

64

This means that over iterations of the optimization process, the target signature will become

an average of all of the positive bag representatives. This causes one of three possibilities

to occur. One, the optimized signature would be an average of all or some of the target

types. This is not desired. If the optimized signature is an average of the target concepts,

this signature does not actually exist, and will likely not be useful for detecting any target

types. Furthermore, it was observed that during optimization, the target signatures would often

optimize to be the same target signature. Regardless of if the initialized target signatures were

unique or not, the optimized signatures would converge to be the same target signature. This

was occurring because of two reasons. First, the objective function in Equation (3-13) gives a

higher objective function value for target signatures that are not like the background. Secondly,

the objective function favors getting a high detection on as many positive bag representatives

as possible. So the signature that all of the target representatives would optimize to would

either be the one that was the most different than the background, or the target signature that

existed the most across the positive bags.

The optimization update equation shown in Equation (3-13) was used to create the results

in Chapter 4 because of the difficulties of optimizing the ideal update equation, shown in

Equation (3-14). The ideal optimization update equation considers the maximum operation

across the bag representatives, shown in the proposed multi-target objective function in

Equation (3-4). The ideal optimization update equation is shown in Equation (3-14).

ˆ̂sk =
ˆ̂t∥∥∥ˆ̂t∥∥∥ where ˆ̂t =

1

N+

∑
ˆ̂x∗∈X∗

k,sel

ˆ̂x∗ − 1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

ˆ̂xi (3-14)

X∗
k,sel =

{
ˆ̂x∗j,k : D

(
ˆ̂x∗j,k, ˆ̂sk

)
> D

(
ˆ̂x∗j,l, ˆ̂sl

)
, ∀l ̸= k , j = 1, ...,N+

}
(3-15)

This shows that the signature being optimized, ˆ̂sk , only uses the set of positive bag

representatives that are selected, X∗
k,sel. A positive bag representative, ˆ̂x∗j,k, is selected to be

included if it has a higher similarity to the target signature k , than any of the other similarities

between the target signatures l , and their respective bag representatives, ˆ̂x∗j,l. Intuitively, this

65

means that the signature being optimized will only include the positive bag representatives

from bags that are believed to have the same target type as the signature being optimized.

Due to the difficulties of using this ideal objective function, the originally extended objective

function shown in Equation (3-13) was used.

In the Sections 3.6 and 3.7, two other optimization methods, the weighted optimization

and the uniqueness term optimization, are proposed to mitigate the problems explained in

Section 3.5. These methods attempt to optimize the target signatures using the correct,

corresponding positive bag representatives during optimization by using the similarity to the

target concepts being optimized.

3.6 Weighted Optimization Approach

The weighted optimization approach aims to mitigate the issue that arises when

optimizing target representatives using multiple positive bags that contain different target

types. Namely, it attempts to optimize the k th target signature, based on the similarity of the

target signature to it’s corresponding positive bag representatives, x∗j ,k . This similarity is then

used as a weighting term, wj ,k , during optimization to more heavily weight the positive bag

representatives that are similar to the target signature being optimized. The weight is defined

below in Equation (3-16).

wj ,k =
s∗j ,k
K∑
k=1

s∗j ,k

(3-16)

where s∗j ,k is the k
th target representative’s similarity to it’s corresponding bag representative,

x∗j ,k , in bag j . The bag representative is the sample from bag j with the largest similarity to

the target signature and is defined in Equation (3-6) from Section 3.1. The similarity metric

used is either ACE, Equation (2-23), or SMF, Equation (2-22), depending on if the multi-target

MI-ACE or multi-target MI-SMF algorithm is being used, respectively. The update equation for

the k th target signature using the weighted optimization approach is shown in Equation (3-17).

66

ˆ̂sk =
ˆ̂tk∥∥∥ˆ̂tk∥∥∥ where ˆ̂tk =

1

N+

∑
j :Lj=1

wj ,kˆ̂x
∗
j ,k

K∑
k=1

wj ,k

− 1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

ˆ̂xi (3-17)

Here it can be seen that, by optimizing the target signatures while using a weighted sum

of positive bag representatives, the optimization process is able to update each target signature

with an average of the positive bag representatives that it is the most alike. In turn, the

positive bag representatives that are the most alike, are most likely target signatures that are

of the same target type. Therefore each initialized target signature will be optimized with the

positive bag representatives that are the same target type. Furthermore, the weighted update

is normalized by the sum of the weights for all of the K target signatures. If there are other

target signatures that are more like the positive bag representative, then the weight will be

reduced. This was used to encourage the target representatives to be unique, because if there

is another representative that is similar to the bag representative, then it is undesired for the

target representative being optimized to use that target representative in it’s update equation.

An optional Radial Basis Function (RBF) kernel is introduced to map the weights, which

are the similarity between a target and a bag representative, towards 0 or 1 to create more

crisp weights. The RBF kernel mapping is shown in Equation (3-18) and used in Line 12 of

Algorithm 5.

w ′
j ,k = K(wj ,k ,wk,max) = exp

(
− ||wj ,k − wk,max ||

2

2σ2

)
(3-18)

wk,max = max(wj ,k)∀j (3-19)

When the RBF kernel is used, each weight, wj ,k , is replaced with its corresponding kernel

mapping weight, w ′
j ,k . The kernel mapping is centered at the max weight value, wk,max ,

where the max is taken across all of the weight values for a given k target signature, shown in

Equation (3-19). In other words, the max weight is taken across all of the bags representatives,

and will be the maximum similarity between the target signature and all of positive bag

representatives. The kernel is centered at wk,max so that any other weight, wj ,k , that is close

to the max weight will be mapped towards 1, while weights that are significantly lower will

67

be pushed towards 0. It can be seen that this will allow the optimization process to only

optimize a target signature with positive bag representatives that are similar to it. Any bag

representative that is not similar enough to the target signature, i.e. that bag does not

have the target type being optimized, will have a very low weight during optimization. The

bandwidth parameter, σ, controls how much the values get pushed towards 0 or 1. A smaller σ

creates a more crisp mapping, while a larger σ creates a softer mapping, and the more equally

distributed the weights will be.

Lastly, because the algorithm uses floating point weighted updates, the algorithm will

never converge unless a stopping threshold is used. To determine when the algorithm is no

longer making meaningful updates, an ACE similarity is used to determine if the signature is

changing across iterations. If the similarity from the previous iteration to the current iteration

is greater than the stopping threshold then the algorithm has fully optimized that signature,

and the signature is no longer updated. This is shown in Equation (3-20).

DACE
(
s
(t)
k , s

(t−1)
k

)
= (̂̂s

(t)
k

T
ˆ̂s
(t−1)
k

)
> θstop (3-20)

where s(t)k is the current iteration of the k th target signature, s(t−1)k is the previous iteration of

the k th target signature, and θstop is the stopping threshold that should be set very close, but

slightly smaller than 1. The algorithm pseudocode is provided in Algorithm 5.

68

Algorithm 5 Multi-Target MI-SMF/MI-ACE Weighted Optimization

1: Compute µb and Σb

2: Subtract the background mean and whiten all instances, x̂ = D− 1
2UT (x− µb)

3: if MI-ACE then

4: normalize: ˆ̂x = x̂
||x̂||

5: end if

6: Initialize ˆ̂s, as the instance in a positive bag that maximizes the obj. fun., Equation (3-10)

7: repeat

8: for k = 1 to K do

9: Update ˆ̂x∗j,k, for ˆ̂sk in each positive bag, B+j , using Equation (3-6)

10: Compute weights, wj ,k , using Equation (3-16)

11: if RBF Kernel then

12: Use mapped weights from Equation (3-18) wj ,k = K(wj ,k ,wk,max)

13: end if

14: Update ˆ̂sk using Equation (3-17)

15: end for

16: until Stopping Criterion Reached

17: Normalize and De-whitened target signatures, sk =
tk

||tk||
, where tk = UD

− 1
2ˆ̂sk

18: return All sk as S

3.7 Uniqueness Term Objective Function Optimization

The last optimization technique is using the modified objective function to promote

target concept uniqueness during optimization. It was noticed that although an initialization

method may be able to select target concepts that represent the various target types, during

optimization using the extended original optimization in Equation (3-13), the target types

would no longer remain unique, and would end up converging to be the same target concept.

This is a problem in applications where target types are more similar than different. The

extended original optimization technique in Section 3.5 updates each signature by averaging all

69

of the positive bag representatives. This can pose a problem though because if the initialized

signatures are alike, they are likely to pick similar or even the same positive bag representatives.

It was often seen that the optimized signatures would converge to be the same signature.

To mitigate this problem, a uniqueness term was added to the objective function, shown

in Equation (3-21), as described in Section 3.3. To optimize the objective function with

the uniqueness term, shown in Equation (3-22), the objective function can be posed as a

lagrangian problem and the update equation for the k th target signature can be solved for.

The lagrangian is written in Equation (3-23). The detection statistic is expanded out showing

the whitened data as well as the inner product. The derivation is demonstrated in Equation

(3-24) - (3-26) using the ACE scenario but the same steps would be done for SMF. Finally, the

update equation for the k th target signature is solved for an written in Equation (3-27).

max
S

1

N+

∑
j :Lj=1

max
sk∈S
(D(x∗j ,k , sk))−

1

N−

∑
j :Lj=0

1

N−
j

∑
xi∈B−

j

max
sk∈S
(D(xi , sk))−

α(
K
2

) K−1∑
k=1

K∑
l=k+1

D(sk , sl)

(3-21)

max
S

1

N+

∑
j :Lj=1

max
ˆ̂sk∈S

(
ˆ̂x
∗T
j ,k
ˆ̂sk
)
− 1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

max
ˆ̂sk∈S

(
ˆ̂x
T

i
ˆ̂sk
)
− α(

K
2

) K−1∑
k=1

K∑
l=k+1

(
ˆ̂s
T

k
ˆ̂sl
)

(3-22)

L = 1

N+

∑
j :Lj=1

max
ˆ̂sk∈S

(
ˆ̂x
∗T
j ,k
ˆ̂sk
)
− 1
N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

max
ˆ̂sk∈S

(
ˆ̂x
T

i
ˆ̂sk
)
− α(

K
2

) K−1∑
k=1

K∑
l=k+1

(
ˆ̂s
T

k
ˆ̂sl
)
−λ
(
ˆ̂sTk ˆ̂sk−1

)
(3-23)

∂L
∂ˆ̂sk
=
1

N+

∑
j :Lj=1

ˆ̂x
∗
j ,k −

1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

ˆ̂xi −
α(
K
2

) K−1∑
k=1

K∑
l=k+1

(
ˆ̂sl
)
− 2λˆ̂sk (3-24)

ˆ̂sk =
1

2λ

(
1

N+

∑
j :Lj=1

ˆ̂x
∗
j ,k −

1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

ˆ̂xi −
α(
K
2

) K−1∑
k=1

K∑
l=k+1

ˆ̂sl

)
(3-25)

70

λ =
||̂̂t||
2

(3-26)

ˆ̂sk =
ˆ̂t∥∥∥ˆ̂t∥∥∥ where ˆ̂t =

1

N+

∑
j :Lj=1

ˆ̂x
∗
j ,k −

1

N−

∑
j :Lj=0

1

N−
j

∑
ˆ̂xi∈B−

j

ˆ̂xi −
α(
K
2

) K−1∑
k=1

K∑
l=k+1

ˆ̂sl (3-27)

The algorithm works very similarly to the original optimization shown in Algorithm 1 and

the pseudocode for the optimization with the uniqueness term has been provided in Algorithm

6.

Algorithm 6 Multi-Target MI-SMF/MI-ACE with Uniqueness Term

1: Compute µb and Σb
2: Subtract the background mean and whiten all instances, x̂ = D− 1

2UT (x− µb)
3: if MI-ACE then
4: normalize: ˆ̂x = x̂

||x̂||
5: end if
6: Initialize ˆ̂s, as the instance in a positive bag that maximizes the obj. fun., Equation (3-10)
7: repeat
8: for k = 1 to K do
9: Update x∗j,k, for ˆ̂sk in each positive bag, B+j , using Equation (3-6)

10: Compute average of other target signatures, ˆ̂sl , where l ̸= k , at current iteration
11: Update ˆ̂sk using Equation (3-27)
12: end for
13: until Stopping Criterion Reached
14: Normalize and De-whitened target signatures, sk =

tk
||tk||

, where tk = UD
− 1
2ˆ̂sk

15: return All sk as S

71

CHAPTER 4
EXPERIMENTAL RESULTS

The Multi-Target MI-ACE and Multi-Target MI-SMF algorithms were applied to two

datasets, a hyperspectral synthetic dataset and the MUUFL Gulfport hyperspectral dataset and

was compared to other MIL algorithms. The receiver operating characteristic (ROC) curve was

used to analyze the algorithm performances.

4.1 Synthetic Hyperspectral Target Detection Data

A synthetic hyperspectral data is needed to showcase how each proposed algorithm works

in different, controlled test cases. Using synthetic data also provides preliminary results that

will emphasize the technique of each algorithm over the difficulty of the dataset.

4.1.1 Data Generation

The synthetic data is generated using the technique outlined in (Jiao and Zare, 2015)

which uses four hyperspectral signatures from the ASTER library (Baldridge et al., 2009) to

generate positive and negative bags. The source code used was from the github repository

by Jiao and Zare (2016). The four spectra used to generate data are the Red Slate, Verde

Antique, Phyllite, and Pyroxenite from the rock class. The hyperspectral signatures contain

211 bands ranging in wavelength from 0.4µm to 2.5µm. These four spectra are shown in

Figure 4-1.

To generate the data, each i th data point in bag j , xij, is generated as a linear combination

of the four endmember spectra shown in Figure 4-1. A target datapoint is generated using

Equation (4-1).

xij =

K∑
k=1

aikd
+
k +

M∑
m=1

aimd
−
m + εij , s.t. ∃aik ̸= 0 and

K∑
k=1

aik +

M∑
m=1

aim = 1 (4-1)

Here it can be seen that the data point is a sum of endmembers and a noise term, εij .

Specifically, a target data point is a weighted sum of K target endmembers, d+k , and M

background endmembers, d−m, weighted by a proportion value, aik for the target endmembers,

72

Figure 4-1. The four hyperspectral signatures used to generate synthetic data.

and aim for the background endmembers. It can be seen that a positive data point must have

some target endmember proportion not equal 0 by definition of what a target datapoint is. To

generate a truly background datapoint Equation (4-2) is introduced.

xij =

M∑
m=1

aimd
−
m + εij , s.t. ∃aim ̸= 0 and

M∑
m=1

aim = 1 (4-2)

Here, the i th data point, xij, in bag j is modeled as a sum of background endmembers, d−m,

and a noise term, εij . It can be seen that a true background data point will only contain

endmember proportions from the background class which is what a background data point is

by definition.

The number of endmembers for each data point are drawn randomly. The proportion

values, aik and aim, in Equation (4-1) and (4-2) are drawn from a Dirichlet distribution

controlled by the αmean parameter. The αmean parameter is the expected mean value for the

generating process with varying levels of magnitude controlled by the magnitude of αmean. The

Dirichlet distribution is used as it provides proportion values that are non zero and sum to 1.

For more details on how the data is generated see Algorithms 7 and 8.

73

Algorithm 7 shows the technique used to generate MIL positive and negative bags given a

dictionary of target signatures, D+, and a dictionary of background signatures, D−. Algorithm

8 shows the process of generating data points, x, based on a bag-level and instance-level label.

In the pseudocode the variables are as follows: K+ is the desired number of positive bags, K−

is the desired number of negative bags, Ni is the number of instances in each bag, Ntar is the

number of target signatures in each positive bag, Nb is the minimum number of background

signatures used to generate each data point, αmean is the desired mean target proportion

value, and σ is a parameter to control the variance of the proportions. The algorithms return a

fully synthetic data matrix, X, consisting of individual data vectors, x, along with their binary

bag-level labels, L, and their binary instance-level labels, l .

Algorithm 7 Pseudo Code for Generating Synthetic Data as Bags

Inputs: D+, D−, K+, K−, Ni , Ntar , Nb, αt mean, σ
Outputs: X =

∪
xij, L, l

1: for <i = 1 to K+> do
2: L(i) = 1
3: for j = 1 to Ntar do
4: l(i , j) = 1
5: xi,j = Algorithm 8 with parameters {D+, D−, L(i), l(i , j), Nb, αt mean, and σ}
6: end for
7: for j = Ntar + 1 to Ni do
8: l(i , j) = 0
9: xi,j = Algorithm 8 with parameters {D+, D−, L(i), l(i , j), Nb, αt mean, and σ}
10: end for
11: end for
12: for i = K+ + 1 to K+ + K− do
13: L(i) = 0
14: for <j = 1 to Ni> do
15: l(i , j) = 0
16: xi,j = Algorithm 8 with parameters {D+, D−, L(i), l(i , j), Nb, αt mean, and σ}
17: end for
18: end for

74

Algorithm 8 Pseudo Code for Generating Linearly Mixed Data Points Given Bag-level and
Point-level Label
Inputs: D+, D−, Li , li ,j , Nb, αt mean, and σ
Outputs: x

1: if Li&lij then
2: Draw a random integer k between [1,K]
3: Randomly select k dictionary elements, D+k , from D

+

4: Draw a random integer m between [Nb,M]
5: Randomly select m dictionary elements, D−

m, from D
−

6: if m == 0 then
7: αmean = αt mean
8: else
9: αmean = σ · [αt mean, 1−αt mean

m
× 11×m]

10: end if
11: a← sample k +m random values from Dirichlet distribution using αmean
12: Generate x using Equation (4-1) with a and [D+k ,D

−
m]

13: else
14: Uniformly draw integer m between [max(1,Nb),M]
15: αmean = σ · 11×m
16: Randomly select m dictionary elements, D−

m, from D
−

17: a← sample m random values from Dirichlet distribution using αmean
18: Generate x using Equation (4-2) with a and D−

m

19: end if

4.1.2 Synthetic Data Experiments

In the following experiments the positive bags contain two target types to determine if

the proposed algorithms can learn multiple target representations. The Phyllite and Pyroxenite

signatures are used as targets while the other two signatures, Red Slate and Verde Antique, are

used to generate the background samples. Unless otherwise stated, the experiments use the

following parameters to generate training data. The number of positive bags (K+) = 25, the

number of negative bags (K−) = 25, the number of points per bag (Ni) = 20, the number of

target points per positive bag (Ntar) = 4, the expected target proportion per positive instance

(αmean) = .2, the variance (σ) = 3, and a desired Signal Noise Ratio (SNR) of 40 dB. The

generated test data has a total of 25,000 true positive instances and 25,000 true negative

instances. With a expected target proportion value (αmean) = .1, the variance (σ) = 10, and a

desired SNR of 30 dB.

75

In Appendix A, experiments are shown to demonstrate how each version of the multi-target

algorithm performs with various algorithm hyperparameter settings. The optimal settings from

these experiments are then used to compare the proposed methods shown in Figures 4-2 - 4-9.

In these experiments, the proposed initialization methods and proposed optimization methods

are shown for both ACE and SMF. To test the optimization methods, the initialization method

is held fixed for these experiments, using the original initialization method, so that the focus

can be on the optimization methods. Additionally, the proposed algorithms are compared to

their single target counterpart, MI-ACE or MI-SMF.

The learned target signatures for the multi-target MI-ACE and multi-target MI-SMF were

used for detection with the ACE and SMF similarity statistic, respectively. The maximum

ACE or SMF value, for all of the learned target signatures, was taken to be the confidence

of an unknown sample being a target. Due to the background mean subtraction done during

whitening, the proposed algorithms learned target concepts are not like the true target

concepts. The learned target signatures are dewhitened, but the mean subtraction is not simple

to add back in and so the concepts are compared with the mean background subtraction.

With this, it is difficult to verify that the algorithms learn the “right” signatures by comparing

them to the two, true target signatures directly, found in Figure 4-1. However, they can be

verified by considering their general shape and how the background mean is expected to affect

the resulting learned signatures. The ROC curve performance, as well as verifying that two

different target signatures are learned, will additionally justify that the algorithms are learning

the “right” signatures.

The run times in the following experiments were computed using an Intel Xeon CPU

E5-1650 with 6 cores at a frequency of 3.60GHz on a machine running Windows 10 with 64.0

GB of RAM. The run time was determined by wrapping the desired part of the initialization

code with the tic and toc function in Matlab.

The experiments in Figures 4-2 - 4-3 show the results of testing the proposed initialization

approaches with ACE. The learned target signatures and their respective ROC curve

76

performance using the optimal parameters found in Appendix A are displayed. It can be

seen that all of the proposed ACE methods initialize the right two signatures. Additionally, the

single target MI-ACE learns one signature that is unable to detect both target signatures in the

test set.

(a) (b)

Figure 4-2. Initialized signatures for different proposed initialization methods using (ACE)
statistic with optimal parameters. (a) Estimated target signature 1. (b) Estimated
target signature 2.

Figure 4-3. ROC curves for initialized signatures for different proposed initialization methods
using (ACE) statistic with optimal parameters

The experiments in Figures 4-4 - 4-5 show the results of testing the proposed initialization

approaches with SMF. The learned target signatures and their respective ROC curve

77

performance using the optimal parameters found in Appendix A are displayed. It can be

seen that all of the proposed SMF methods initialize the right two signatures. Additionally, the

single target MI-SMF learns one signature that is unable to detect both target signatures in the

test set.

(a) (b)

Figure 4-4. Initialized signatures for different proposed initialization methods using (SMF)
statistic with optimal parameters. (a) Estimated target signature 1. (b) Estimated
target signature 2.

Figure 4-5. ROC curves for initialized signatures for different proposed initialization methods
using (SMF) statistic with optimal parameters

78

Table 4-1. Area Under the Curve (AUC) and run times for each of the proposed initialization
methods and the single target version of MI-ACE/SMF on the synthetic dataset

Method (ACE) Time (ACE) AUC (SMF) Time (SMF) AUC

Original 6.56 0.976 6.40 0.976
Uniqueness term 6.21 0.976 6.20 0.976
K-Means 0.178 0.976 0.162 0.976
Ranked
K-Means

0.170 0.976 0.113 0.535

MI-CR 1.56 0.976 0.648 0.535
MI-ACE/SMF 4.21 0.535 4.21 0.535

It can be seen, that many of the performances are identical and are on top of each other

in the ROC curves. This can be verified in Table 4-1 by seeing which algorithms have the same

Area Under the Curve (AUC). The ACE results show that all of the proposed algorithms are

able to initialize the right target signatures, while the single target MI-ACE is unable to learn

a target signature that can detect both target types. The SMF results show that the original

greedy initialization method, the uniqueness term method, and the K-Means method are able

to initialize the right target signatures, while the other proposed algorithms initialize the same

target signature twice. The single target MI-SMF algorithm is unable to learn a single target

that can detect both target signatures.

The experiments in Figures 4-6 - 4-7 show the results of testing the proposed optimization

approaches with ACE. The learned target signatures and their respective ROC curve

performance using the optimal parameters found in Appendix A are displayed. It can be

seen that only the original greedy optimization and the uniqueness term optimization optimize

the signatures to be the right two signatures. The other proposed optimization approaches

optimize the signatures to be unable to detect both target signatures in the test set.

79

(a) (b)

Figure 4-6. Optimized target signatures with the various proposed optimization techniques
using (ACE) statistic. Initialized signatures are from K-Means method. (a)
Estimated target signature 1. (b) Estimated target signature 2.

Figure 4-7. Optimized target signatures ROC curves with various proposed optimization
techniques using (ACE) statistic. Initialized signatures are from K-Means method.

The experiments in Figures 4-8 - 4-9 show the results of testing the proposed optimization

approaches with SMF. The learned target signatures and their respective ROC curve

performance using the optimal parameters found in Appendix A are displayed. It can be

seen that all of the proposed optimization methods are able to optimize the signatures to be

80

the right two signatures. The single target MI-SMF is only able to optimize a single target

which cannot detect both target signatures in the test set.

(a) (b)

Figure 4-8. Optimized target signatures with the various proposed optimization techniques
using (SMF) statistic. Initialized signatures are from K-Means method. (a)
Estimated target signature 1. (b) Estimated target signature 2.

Figure 4-9. Optimized target signatures ROC curves with various proposed optimization
techniques using (SMF) statistic. Initialized signatures are from K-Means method.

It can be seen, that many of the performances are identical and are on top of each other

in the ROC curves. This can be verified in Table 4-2 by seeing which algorithms have the same

Area Under the Curve (AUC). The ACE results show that only the original and uniqueness

81

Table 4-2. Area Under the Curve (AUC) for each of the proposed optimization methods and
the single target version of MI-ACE/SMF on the synthetic dataset

Method (ACE) AUC (SMF) AUC

Original 0.975 0.976
Weighted 0.533 0.976
Kernel weighted 0.500 0.976
Uniqueness term 0.974 0.976
MI-ACE/SMF 0.534 0.535

term optimization methods are able to optimize the right target signatures, while all of the

others are unable to learn a set of target signatures that can detect both target types. The

single target MI-ACE algorithm is unable to learn a single target signature that is able to

detect both target signatures in the test set. The SMF results show that all of the proposed

optimization methods are able to optimize the signatures to be the right target signatures. The

single target MI-SMF algorithm is unable to learn a single target that can detect both target

signatures in the test set.

4.2 MUUFL Gulfport Hyperspectral Target Detection Data

The MUUFL Gulfport Hyperspectral data set (Gader et al., 2013) is chosen to test

the proposed algorithms on a very challenging dataset. The dataset was collected over the

University of Southern Mississippi-Gulfport campus in Long Beach, MS. The original dataset

contains a total of 64 handmade targets that were constructed using wood frames and covered

with 100% cotton, cloth panels. 57 of the handmade targets were selected to be included in

the experiments that follow. The 57 targets were constructed to have different sizes of 0.5m

x 0.5m, 1m x 1m, and 3m x 3m. Four of the seven targets not included are large targets

measuring 6m x 10m and were collected for the purposes of calibration. The other three of

seven targets that are not included are the three Vineyard Green targets that were constructed

using a different material than the Faux Vineyard Green targets. The 57 targets that are used

contain 15 Brown, 15 Dark Green, 12 Faux Vineyard Green, and 15 Pea Green targets.

The data set contains a total of 325 x 337 pixels with 72 spectral bands corresponding

to 375nm to 1050nm at a sampling interval of 10nm. The ITRES CASI-1500 hyperspectral

82

Figure 4-10. Scatter plot of the four types of target ground truth locations over the MUUFL
Gulfport collection site RGB image

imager was used for the collection. The first four and last four spectral bands from the

hyperspectral cube were found to be noisy and were removed during the experiments. The

spatial resolution of each pixel is 1m2. Two different sets of the data, Gulfport Campus

Flight one and Gulfport Campus Flight three, collected on November 8th 2010, were used for

algorithm cross validation training and testing in the experiments that follow. Gulfport Campus

Flight one was used for training and Gulfport Campus Flight three was used for testing. These

two flights were at the same altitude, 3500 feet, so they have the same spatial resolution which

makes it possible to use the two for training and testing. The 57 targets are displayed over an

an RGB image of the data collection in Figure 4-10.

83

4.2.1 Individual Target Type Detection Experiments

For the experiments that follow, each individual target type is treated as the target class

and the positive bags for training only contain the individual target type, i.e. for the Brown

test case, only Brown targets were used during training. The “Truth” target signature for each

target type was manually extracted from the image to provide a performance comparison of the

ground truth target signature versus a learned target signature from the proposed algorithms.

The cosine similarity (normalized inner product) between the “Truth” signature and a test pixel

is used to generate a confidence for every test pixel. When computing the “Truth” signature

confidence for the SMF experiments, the cosine similarity is not normalized by the test pixel,

similar to SMF. Since there is only one target type in these experiments, a single signature is

learned for the proposed methods to showcase the different initialization methods. The ACE

or SMF detection statistic is used with the corresponding proposed ACE or SMF algorithms to

determine the confidence of a test sample being a target.

The resulting confidences are scored using the bullwinkle scoring method outlined by

Glenn et al. (2013) with a halo size of 2, which accounts for the inaccuracies of the recording

GPS system in the test data. The bullwinkle scoring method takes the maximum value within

a region around the ground truth, known as a halo, and uses the maximum value from the

halo to score the results. Similarly to the synthetic dataset, due to the background mean

subtraction done during whitening, the proposed algorithms’ learned target concepts are

not like the true target concepts. The learned target signatures are dewhitened, but the

mean subtraction is not simple to add back in, so the concepts are compared with the mean

background subtracted. With this, it is difficult to verify that the algorithms learn the “right”

signatures by comparing them directly to the ground truth signatures. However, they can be

verified by considering their general shape and how the background mean is expected to affect

the resulting learned signatures. The ROC curve performance, as well as comparing the target

signatures, will justify that the algorithms are learning the “right” signatures. The Normalized

84

Area Under the Curve (NAUC) is computed within the window of 0 to 0.001 FAR/m2 of the

ROC.

To create each positive bag for training, a pixel window of size 5x5 around the corresponding

GPS ground truth location was used for each target of interest. This window size is chosen

to account for the GPS inaccuracy used for recording the ground truth. Then most of the

remaining area is used as one large negative bag. An additional two pixel wide keep out region

is added around each of the positive bags, as well as a mask is added to remove the bottom

right corner which is not valid data in the original image. Lastly, the four large atmospheric

correction targets in the middle of the image are masked out. The remaining region in

white corresponds to the large negative bag used for training. The bagging process for the

“Brown” targets is showcased in Figure 4-11. Following, the number of targets and size of each

individual target type is shown in Table 4-3.

(a) (b)

Figure 4-11. Bagging image masks for the MUUFL Gulfport dataset brown targets with a 5 x 5
window. The white region corresponds to the regions extracted during the
bagging process. (a) Positive bag regions. (b) Negative bag region.

85

Table 4-3. The number of targets in each of the MUUFL Gulfport hyperspectral datasets for
the single target experiments.

Target type Size: 0.5m x 0.5m Size: 1m x 1m Size: 3m x 3m All sizes

Brown 5 5 5 15
Faux vineyard green 4 4 4 12
Dark green 5 5 5 15
Pea green 5 5 5 15

The following four Sections 4.2.1.1 - 4.2.1.4 show the results of initializing a single

signature using the different proposed methods while training on an individual target type,

i.e. Brown, Faux Vineyard Green, Dark Green, or Pea Green. The performances are compared

using a ROC curve and the corresponding NAUC. The run times of the initialization methods

are compared using the tic and toc functions from matlab. The run times in the following

experiments were computed using an Intel Xeon CPU E5-1650 with 6 cores at a frequency

of 3.60GHz on a machine running Windows 10 with 64.0 GB of RAM. The run time was

determined by wrapping the desired part of the initialization code with the tic and toc function

in Matlab.

4.2.1.1 Brown targets

(a) (b)

Figure 4-12. Experiment results for Multi-Target MI-ACE using different initialization
techniques, on MUUFL Gulfport data, brown targets. (a) Initialized brown target
signatures. (b) Brown targets ROC curve.

86

(a) (b)

Figure 4-13. Experiment results for Multi-Target MI-SMF using different initialization
techniques, on MUUFL Gulfport data, brown targets. (a) Initialized brown target
signatures. (b) Brown targets ROC curve.

Table 4-4. Brown target initialization experiments showing the proposed methods for ACE,
SMF, and the ground truth. The run times and NAUC performances on the
MUUFL Gulfport hyperspectral dataset are listed. MI-HE results obtained from
(Jiao, 2017).

Method (ACE) Time (ACE) AUC (SMF) Time (SMF) AUC (HSD) NAUC

Original 0.174 0.430 0.175 0.410 -
K-Means 0.013 0.401 0.015 0.408 -
Ranked K-Means 0.035 0 0.037 0.138 -
MI-CR 0.173 0.427 0.188 0.410 -
MI-HE - 0.433 - - 0.499
Truth 0 0.017 0 0.047 -

87

4.2.1.2 Faux vineyard green targets

(a) (b)

Figure 4-14. Experiment results for Multi-Target MI-ACE using different initialization
techniques, on MUUFL Gulfport data, faux vineyard green targets. (a) Initialized
faux vineyard green target signatures. (b) Faux vineyard green targets ROC curve.

(a) (b)

Figure 4-15. Experiment results for Multi-Target MI-SMF using different initialization
techniques, on MUUFL Gulfport data, faux vineyard green targets. (a) Initialized
faux vineyard green target signatures. (b) Faux vineyard green targets ROC curve.

88

Table 4-5. Faux vineyard green target initialization experiments showing the proposed methods
for ACE, SMF, and the ground truth. The run times and NAUC performances on
the MUUFL Gulfport hyperspectral dataset are listed. MI-HE results obtained from
(Jiao, 2017).

Method (ACE) Time (ACE) AUC (SMF) Time (SMF) AUC (HSD) NAUC

Original 0.284 0.218 0.223 0.279 -
K-Means 0.017 0.310 0.017 0.309 -
Ranked K-Means 0.027 0 0.050 0 -
MI-CR 0.427 0.167 0.160 0.313 -
MI-HE - 0.104 - - 0.655
Truth 0 0.250 0 0.029 -

4.2.1.3 Dark green targets

(a) (b)

Figure 4-16. Experiment results for Multi-Target MI-ACE using different initialization
techniques, on MUUFL Gulfport data, dark green targets. (a) Initialized dark
green target signatures. (b) Dark green targets ROC curve.

89

(a) (b)

Figure 4-17. Experiment results for Multi-Target MI-SMF using different initialization
techniques, on MUUFL Gulfport data, dark green targets. (a) Initialized dark
green target signatures. (b) Dark green targets ROC curve.

Table 4-6. Dark green target initialization experiments showing the proposed methods for ACE,
SMF, and the ground truth. The run times and NAUC performances on the
MUUFL Gulfport hyperspectral dataset are listed. MI-HE results obtained from
(Jiao, 2017).

Method (ACE) Time (ACE) AUC (SMF) Time (SMF) AUC (HSD) NAUC

Original 0.159 0.384 0.180 0.347 -
K-Means 0.011 0.386 0.013 0.351 -
Ranked K-Means 0.052 0.383 0.024 0.351 -
MI-CR 0.083 0.385 0.067 0.351 -
MI-HE - 0.379 - - 0.453
Truth 0 0.040 0 0.045 -

90

4.2.1.4 Pea green targets

(a) (b)

Figure 4-18. Experiment results for Multi-Target MI-ACE using different initialization
techniques, on MUUFL Gulfport data, pea green targets. (a) Initialized pea green
target signatures. (b) Pea green targets ROC curve.

(a) (b)

Figure 4-19. Experiment results for Multi-Target MI-SMF using different initialization
techniques, on MUUFL Gulfport data, pea green targets. (a) Initialized pea green
target signatures. (b) Pea green targets ROC curve.

91

Table 4-7. Pea green target initialization experiments showing the proposed methods for ACE,
SMF, and the ground truth. The run times and NAUC performances on the
MUUFL Gulfport hyperspectral dataset are listed. MI-HE results obtained from
(Jiao, 2017).

Method (ACE) Time (ACE) AUC (SMF) Time (SMF) AUC (HSD) NAUC

Original 0.191 0.267 0.185 0.267 -
K-Means 0.013 0.267 0.011 0.267 -
Ranked K-Means 0.174 0 0.030 0.267 -
MI-CR 0.173 0.267 0.100 0.267 -
MI-HE - 0.267 - - 0.267
Truth 0 0.267 0 0 -

4.2.2 All Target Types Detection Experiments

For the experiments that follow, all of the target types are treated as the target class and

the positive bags contain all of the target types. The algorithms are unaware which positive

bags contain which target types, only that the positive bags contain a target. The “Truth”

target signatures for each target type were manually extracted from the image to provide

a performance comparison of the ground truth target signature versus the learned target

signatures. The cosine similarity (normalized inner product) between the “Truth” signature and

a test pixel is used to generate a confidence for every test pixel. When computing the “Truth”

signature confidence for the SMF experiments, the cosine similarity is not normalized by the

test pixel, similar to SMF. The proposed initialization and optimization methods are tested.

The ACE or SMF detection statistic is used with the corresponding proposed ACE or SMF

algorithms to determine the confidence of a test sample being a target.

The resulting confidences are scored using the bullwinkle scoring method outlined by Glenn

et al. (2013) with a halo size of 2, which accounts for the inaccuracies of the recording GPS

system in the test data. The bullwinkle scoring method takes the maximum value within a

region around the ground truth, known as a halo, and uses the maximum value from the halo

to score the results. Due to the background mean subtraction done during whitening, the

proposed algorithms’ learned target concepts are not like the true target concepts. The learned

target signatures are dewhitened, but the mean subtraction is not simple to add back in, so the

92

concepts are compared with the mean background subtracted. With this, it is difficult to verify

that the algorithms learn the “right” signatures by comparing them directly to the ground

truth signatures. However, they can be verified by considering their general shape and how

the background mean is expected to affect the resulting learned signatures. The ROC curve

performance, as well as comparing the target signatures, will justify that the algorithms are

learning the “right” signatures. The Normalized Area Under the Curve (NAUC) is computed

within the window of 0 to 0.001 FAR/m2 of the ROC.

Like the individual target type bagging process, to create each positive bag for training, a

pixel window of size 5 x 5 around the corresponding GPS ground truth location was used for

each target of interest. This window size was chosen to account for the GPS inaccuracy used

for recording the ground truth. Then most of the remaining area is used as one large negative

bag. Here, an additional two pixel wide keep out region is added around each of the positive

bags, as well as a mask is added to remove the bottom right corner which was not originally

valid data in the image. Lastly, the four large atmospheric correction targets in the middle of

the image are masked out. The remaining region in white corresponds to the large negative

bag used for training. The bagging process for all of the targets is showcased in Figure 4-20.

Following, the number of targets and size is shown in Table 4-8.

(a) (b)

Figure 4-20. Bagging image masks for all targets in the MUUFL Gulfport dataset with a 5 x 5
window. The white region corresponds to the regions extracted during the
bagging process. (a) Positive bag regions. (b) Negative bag region.

93

Table 4-8. The number of targets in the MUUFL Gulfport hyperspectral dataset for all targets.
Targets Size: 0.5m x 0.5m Size: 1m x 1m Size: 3m x 3m All sizes

All targets 19 19 19 57

4.2.2.1 Initialization methods experiments

The optimal initialization hyperparameter settings were tested in Appendix B and are

used in the following experiments. The experiments compare the five multi-target initialization

methods proposed which include the original greedy method, the K-Means method, the Ranked

K-Means method, the MI-CR method, and the uniqueness term method. Additionally, the

single target version as well as using the extracted ground truth signal with a cosine similarity

metric explained in Section 4.2.2 are compared. The multi-target initialization methods are

selected to initialize four signatures. Both the ACE and SMF versions were tested. The target

concepts for the multi-target MI-ACE and multi-target MI-SMF were used for detection with

the ACE and SMF similarity statistic, respectively. The maximum ACE or SMF value, for all of

the learned target concepts, was taken to be the confidence of detecting an unknown sample.

94

(a) (b)

(c) (d)

(e) (f)

Figure 4-21. Initialized signatures for Multi-Target MI-ACE on MUUFL Gulfport data, all
targets. (a) Original method. (b) K-Means method. (c) Ranked K-Means
method. (d) MI-CR method. (e) Uniqueness term method. (f) Single target
MI-ACE.

95

Figure 4-22. ROC curves for initialized signatures for different proposed initialization methods
using (ACE) statistic with optimal parameters.

96

(a) (b)

(c) (d)

(e) (f)

Figure 4-23. Initialized signatures for Multi-Target MI-SMF on MUUFL Gulfport data, all
targets. (a) Original method. (b) K-Means method. (c) Ranked K-Means
method. (d) MI-CR method. (e) Uniqueness term method. (f) Single target
MI-SMF.

97

Figure 4-24. ROC curves for initialized signatures for different proposed initialization methods
using (SMF) statistic with optimal parameters

Table 4-9. Comparison of the proposed initialization methods’ run time and ROC NAUC using
all of the target types for training and testing using the MUUFL Gulfport
hyperspectral dataset. MI-HE results obtained from (Jiao, 2017).

Method (ACE) Time (ACE) AUC (SMF) Time (SMF) AUC (HSD) NAUC

Original 7.09 0.268 7.08 0.292 -
K-Means 0.041 0.292 0.046 0.250 -
Ranked K-Means 0.060 0.271 0.074 0.293 -
MI-CR 1.22 0.250 1.374 0.292 -
Unique 7.09 0.295 7.12 0.292 -
MI-HE - 0.257 - - 0.304
MI-ACE/SMF 1.71 0.228 1.75 0.198 -
Truth 0 0.074 0 0.018 -

98

4.2.2.2 Optimization methods experiments

The optimal optimization hyperparameter settings were tested in Appendix B and are

used in the following experiments. The experiments that follow compare the four multi-target

optimization methods proposed which include the original optimization method, the weighted

optimization method, the weighted kernel method, and the uniqueness term method.

Additionally, the single target version of MI-ACE and MI-SMF, as well as using the extracted

ground truth signal with a cosine similarity metric explained in Section 4.2.2, are compared

with the proposed optimization algorithms. The multi-target methods are selected to initialize

four signatures using the original greedy method and then optimize those signatures with the

varying optimization methods. Both the ACE and SMF versions were tested. Figures ?? - ??

show the optimized signatures for all of the methods with their respective ROC curves for both

ACE and SMF.

99

(a) (b)

(c) (d)

(e)

Figure 4-25. Optimized signatures for Multi-Target MI-ACE on MUUFL Gulfport data, all
targets. (a) Original method. (b) Weighted method. (c) Weighted kernel method.
(d) Uniqueness term method. (e) Single target MI-ACE.

100

Figure 4-26. ROC curves for optimized signatures for different proposed optimization methods
using (ACE) statistic with optimal parameters.

101

(a) (b)

(c) (d)

(e)

Figure 4-27. Optimized signatures for Multi-Target MI-SMF on MUUFL Gulfport data, all
targets. (a) Original method. (b) Weighted method. (c) Weighted kernel method.
(d) Uniqueness term method. (e) Single target MI-SMF.

102

Figure 4-28. ROC curves for optimized signatures for different proposed optimization methods
using (SMF) statistic with optimal parameters.

Table 4-10. Comparison of the proposed optimization methods’ ROC NAUC using all of the
target types for training and testing using the MUUFL Gulfport hyperspectral
dataset. MI-HE results obtained from (Jiao, 2017).

Method (ACE) NAUC (SMF) NAUC (HSD) NAUC

Original 0.128 0.278 -
Weighted 0.017 0.202 -
Weighted kernel 0.068 0.138 -
Unique 0.180 0.277 -
MI-HE 0.257 - 0.304
MI-ACE/SMF 0.149 0.201 -
Truth 0.074 0.018 -

103

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

In this work, various methods were proposed and investigated for the multi-target MI-ACE

and multi-target MI-SMF algorithms. Through the experiments, it was seen that these

algorithms were able to learn multiple target concepts and improve performance when there

were multiple target types in training and test sets.

The experiments in Chapter 4 showcase the different functionalities of the various

proposed multi-target algorithms. It was seen that in many cases the proposed algorithms

would maintain or exceed performance of the single target version. Additionally, some of

the proposed initialization clustering methods significantly reduce the run time of initializing

signatures, namely, the K-Means, ranked K-Means, and MI-CR algorithms. Of these clustering

techniques it was seen that the K-Means technique provided the most consistent results, and

would often outperform the greedy method using the original objective function. It was also

seen through the experiments in Chapter 4 and Appendix A and B, that the uniqueness term

method performed as expected. With this method, the learned signatures were encouraged to

be different through the objective function, and were seen to be so in the results shown.

It was also seen through the experiments in Appendix A and B, that the performance

was not especially sensitive to the number of clusters, so long as there were enough clusters

to classify the diverse background of the MUUFL Gulfport dataset. If a background is to be

expected to be uniform, a lower number of clusters may be used and the same performance can

be expected.

Lastly, it was seen that the weighted and kernel weighted optimization methods did not

perform well. After optimization, the signatures did not look like the extracted ground truth

signatures. It is believed that the weights are updating the target concepts to be an average

of many different target types. Rather, it is desired for the weights to only update the target

concepts towards a specific target type.

104

In conclusion, the greedy method which uses the original objective function, the

uniqueness term method, as well as the K-Means initialization method proved to be the

most consistent in performance and robust to hyperparameter changes. The other methods

provided better performance for some of the test cases, but were overall not consistent. The

research question to determine a way to optimize a group of target concepts within this

framework is still open to investigation. This problem is especially challenging. It is desired to

be able to optimize the signatures to be unique and accurately representative of the various

target types. The original optimization method showcased the best optimization performance,

but it is believed this can be improved if an optimization technique can learn the target type

labels while performing optimization.

In the MUUFL Gulfport all targets optimization experiment, the optimization caused the

performance of the proposed algorithms to decrease. This demonstrates the need to develop

other optimization approaches that can optimize each target individually to at least maintain

performance of the initialized signatures. Potential future work includes investigating an

Expectation Maximization optimization that directly learns the latent target type variables of

the true positive instances. With this, the target concepts could be updated using the original

single target update equation shown in Equation (2-28), by only considering the positive

instances that are expected to be in the same target type class. Additionally, an optimization

method to update the target signatures using only the positive bag representatives that are

the most similar to the target concept being updated is expected to improve optimization

performance.

One technique that will be investigated is including a maximum operation during

optimization, where only the positive bag representatives, xj,k, that are the most similar to

each target being optimized is used during that target’s optimization. For example, if positive

bag j is chosen by target k during optimization, because it’s positive bag representative, xj,k, is

the most similar to target k , then no other other target concepts being optimized will be able

to use a positive bag representative from that bag during optimization. This will address the

105

fact that not all positive bags have every target concept in them. With this, it is expected that

optimization performance will increase significantly by allowing each target concept to optimize

with only the positive bag representatives that are the same target type.

106

APPENDIX A
SIMULATED DATA HYPERPARAMETER EXPERIMENTS

A.1 Initialization Hyperparameter Experiments

(a) (b)

Figure A-1. Two initialized signatures for Multi-Target MI-ACE using unique targets with
various α levels on simulated data. (a) Estimated target signature 1. (b)
Estimated target signature 2.

Figure A-2. ROC curves for two initialized signatures using Multi-Target MI-ACE with unique
target initialization with various α levels on simulated data

107

Table A-1. Uniqueness term initialization hyperparameter experiment results showing the run
time and ROC AUC.

Uniqueness term Run time ROC AUC

α = .05 6.36 0.976
α = .1 6.20 0.976
α = .2 6.17 0.976
α = .5 6.18 0.977
α = 1 6.20 0.976

108

(a) (b)

Figure A-3. Two initialized signatures for Multi-Target MI-ACE using ranked K-Means with
various cluster rank weights, (wB+, wD+, wD−), on simulated data with 4 targets
per positive bag. (a) Estimated target signature 1. (b) Estimated target signature
2.

Figure A-4. ROC curves for two initialized signatures for Multi-Target MI-ACE using ranked
K-Means with various cluster rank weights, (wB+, wD+, wD−), on simulated data
with 4 targets per positive bag

109

(a) (b)

Figure A-5. Two initialized signatures for Multi-Target MI-ACE using ranked K-Means with
various cluster rank weights, (wB+, wD+, wD−), on simulated data with 15
targets per positive bag. (a) Estimated target signature 1. (b) Estimated target
signature 2.

Figure A-6. ROC curves for two initialized signatures for Multi-Target MI-ACE using ranked
K-Means with various cluster rank weights, (wB+, wD+, wD−), on simulated data
with 15 targets per positive bag

110

Table A-2. Cluster rank weights initialization hyperparameter experiment results showing the
run time and ROC AUC for two different training sets, one with 4 target per
positive bag, and the later with 15 targets per positive bag.

4 Targets per + bag 15 Targets per + bag

Weights: (wB+, wD+, wD-) Run time ROC AUC Run time ROC AUC

(0, 0, 1) 0.327 0.976 0.299 0.980
(.1, .1, .8) 0.181 0.976 0.127 0.980

(.33, .33, .33) 0.116 0.497 0.111 0.980
(.8, .1, .1) 0.097 0.545 0.080 0.895
(.5, .5, 0) 0.121 0.574 0.111 0.555

111

(a) (b)

Figure A-7. Two initialized signatures for Multi-Target MI-ACE using original multi-target
objective function with various number of clusters, C , on simulated data. (a)
Estimated target signature 1. (b) Estimated target signature 2.

Figure A-8. ROC curves for two initialized signatures for Multi-Target MI-ACE using original
multi-target objective function with various number of clusters, C , on simulated
data

112

Table A-3. Number of clusters initialization hyperparameter experiment while using K-Means.
Results show the run time and ROC AUC.

Number of clusters Run time ROC AUC

C = 3 0.269 0.976
C = 4 0.129 0.976
C = 5 0.095 0.976
C = 8 0.088 0.976
C = 12 0.120 0.976
C = 20 0.097 0.976

113

A.2 Optimization Hyperparameter Experiments

(a) (b)

Figure A-9. Two optimized signatures for Multi-Target MI-ACE using kernel based weighted
optimization with various bandwidths, σ, on simulated data. (a) Estimated target
signature 1. (b) Estimated target signature 2.

Figure A-10. ROC curves for two optimized signatures for Multi-Target MI-ACE using kernel
based weighted optimization with various bandwidths, σ, on simulated data

114

Table A-4. Kernel bandwidth hyperparameter optimization experiment. Results show ROC
AUC for the weighted kernel optimization method.

Bandwidth ROC AUC

σ = .05 0.565
σ = .1 0.600
σ = .2 0.697
σ = .4 0.781
σ = .6 0.533
σ = 1 0.551

115

(a) (b)

Figure A-11. Optimized target signatures with various uniqueness term, α, values. Initialized
signatures were from original multi-target initialization technique. (a) Estimated
target signature 1. (b) Estimated target signature 2.

Figure A-12. ROC curves for optimized target signatures with various uniqueness term, α,
values. Initialized signatures were from original multi-target initialization
technique.

116

Table A-5. Uniqueness term hyperparameter experiment. Results show ROC AUC for the
optimized signatures using the uniqueness term objective function.

Uniqueness term ROC AUC

α = .05 0.975
α = .1 0.974
α = .2 0.971
α = .5 0.967
α = 1 0.964

117

APPENDIX B
MUUFL GULFPORT HYPERSPECTRAL HYPERPARAMETER EXPERIMENTS

B.1 Single Target Initialization Hyperparameter Experiments

(a) (b)

Figure B-1. Experiment results for Multi-Target MI-ACE using K-Means with various number
of clusters, C , on MUUFL Gulfport data, brown. (a) Estimated brown target
signatures. (b) Brown targets ROC curve.

(a) (b)

Figure B-2. Experiment results for Multi-Target MI-ACE using K-Means with various number
of clusters, C , on MUUFL Gulfport data, pea green. (a) Estimated pea green
target signatures. (b) Pea green targets ROC curve.

118

(a) (b)

Figure B-3. Experiment results for Multi-Target MI-ACE using K-Means with various number
of clusters, C , on MUUFL Gulfport data, dark green. (a) Estimated dark green
target signatures. (b) Dark green targets ROC curve.

(a) (b)

Figure B-4. Experiment results for Multi-Target MI-ACE using K-Means with various number
of clusters, C , on MUUFL Gulfport data, faux vineyard green. (a) Estimated faux
vineyard green target signatures. (b) Faux vineyard green targets ROC curve.

119

Table B-1. Number of clusters hyperparameter experiment using K-Means. Showing results
with run time and AUC NAUC for learning a single target on each of the target
types: brown, pea green, dark green, and faux vineyard green.

Brown Pea Green Dark Green Vineyard Green
Number of clusters Time NAUC Time NAUC Time NAUC Time NAUC

C = 3 0.045 0.395 0.014 0.263 0.059 0.381 0.014 0.021
C = 4 0.016 0.401 0.014 0.264 0.012 0.387 0.012 0.310
C = 5 0.012 0.401 0.013 0.267 0.012 0.385 0.012 0.267
C = 8 0.015 0.405 0.015 0.266 0.014 0.385 0.014 0.304
C = 12 0.017 0.401 0.018 0.267 0.017 0.385 0.016 0.324
C = 20 0.022 0.411 0.022 0.267 0.022 0.385 0.021 0.321

120

(a)
(b)

Figure B-5. Initialized signatures and ROC Curve for Multi-Target MI-ACE using Ranked
K-Means with various cluster rank weights, (wB+, wD+, wD−), on MUUFL
Gulfport data, brown. (a) Estimated brown target signatures. (b) Brown targets
ROC curve.

(a)
(b)

Figure B-6. Experiment results for Multi-Target MI-ACE using Ranked K-Means with various
cluster rank weights, (wB+, wD+, wD−), on MUUFL Gulfport data, pea green.
(a) Estimated pea green target signatures. (b) Pea green targets ROC curve.

121

(a)
(b)

Figure B-7. Experiment results for Multi-Target MI-ACE using Ranked K-Means with various
cluster rank weights, (wB+, wD+, wD−), on MUUFL Gulfport data, dark green.
(a) Estimated dark green target signatures. (b) Dark green targets ROC curve.

(a)
(b)

Figure B-8. Experiment results for Multi-Target MI-ACE using Ranked K-Means with various
cluster rank weights, (wB+, wD+, wD−), on MUUFL Gulfport data, faux
vineyard green. (a) Estimated faux vineyard green target signatures. (b) Faux
vineyard green targets ROC curve.

122

Table B-2. Cluster rank weights hyperparameter experiment. Showing results with run time
and AUC NAUC for learning a single target on each of the target types: brown, pea
green, dark green, and faux vineyard green.

Brown Pea Green Dark Green Vineyard Green
(wB+, wD+, wD-) Time NAUC Time NAUC Time NAUC Time NAUC

(0, 0, 1) 0.077 0.401 0.041 0.267 0.049 0.385 0.043 0
(.1, .1, .8) 0.040 0.391 0.038 0.267 0.039 0.386 0.043 0
(.3, .3, .3) 0.034 0 0.039 0.267 0.046 0.006 0.037 0.248
(.8, .1, .1) 0.036 0.418 0.033 0 0.038 0 0.034 0.329
(.5, .5, 0) 0.050 0 0.037 0.030 0.033 0 0.043 0.162

123

B.2 All Targets Experiments

B.2.1 Initialization Hyperparameter Experiments

(a) (b)

(c) (d)

(e)

Figure B-9. Initialized signatures for Multi-Target MI-ACE using original multi-target objective
function with various uniqueness term weights, α, on MUUFL Gulfport data, all
targets. (a) α = 0.05. (b) α = 0.1. (c) α = 0.2. (d) α = 0.5. (e) α = 1.

124

Figure B-10. MUUFL Gulfport ROC curves for initialized signatures with various α settings.

Table B-3. Uniqueness term hyperparameter weight initialization experiment. Showing results
using initialized signatures with run time and AUC NAUC for learning four target
signatures on all target types.

Uniqueness term Time NAUC

α = 0.05 6.92 0.295
α = 0.1 6.92 0.294
α = 0.2 6.89 0.213
α = 0.5 6.93 0.206
α = 1 6.91 0.199

125

(a) (b)

(c) (d)

(e) (f)

Figure B-11. Initialized signatures for Multi-Target MI-ACE using original multi-target objective
function with various number of clusters, C , on MUUFL Gulfport data, all
targets. (a) C = 5. (b) C = 6. (c) C = 8. (d) C = 10. (e) C = 15. (f)
C = 20.

126

Figure B-12. ROC Curve for Multi-Target MI-ACE using original multi-target objective function
with various number of clusters, C , on MUUFL Gulfport data, all targets.

Table B-4. Number of clusters hyperparameter initialization experiment with K-Means.
Showing results using initialized signatures with run time and AUC NAUC for
learning four target signatures on all target types.

Number of clusters Time NAUC

C = 5 0.082 0.206
C = 6 0.024 0.213
C = 8 0.027 0.211
C = 10 0.033 0.213
C = 15 0.033 0.294
C = 20 0.043 0.305

127

(a) (b)

(c) (d)

(e)

Figure B-13. Initialized signatures for Multi-Target MI-ACE using original multi-target objective
function with various cluster rank weights, (wB+,wD+,wD−), on MUUFL
Gulfport data, all targets. (a) (0, 0, 1). (b) (.1, .1, .8). (c) (.3, .3, .3). (d)
(.8, .1, .1). (e) (.5, .5, 0).

128

Figure B-14. ROC curves for initialized signatures with various cluster rank weights,
(wB+,wD+,wD−), settings.

Table B-5. Cluster rank hyperparameter weights initialization experiment. Showing results
using initialized signatures with run time and AUC NAUC for learning four target
signatures on all target types.

Weights: (wB+, wD+, wD-) Time NAUC

(0, 0, 1) 0.239 0.265
(.1, .1, .8) 0.061 0.193
(.3, .3, .3) 0.060 0.005
(.8, .1, .1) 0.073 0.016
(.5, .5, 0) 0.070 0.019

129

B.2.2 Optimization Hyperparameter Experiments

(a) (b)

(c) (d)

(e)

Figure B-15. Optimized signatures for Multi-Target MI-ACE using original multi-target
objective function with various uniqueness term weights for optimization, α, on
MUUFL Gulfport data, all targets. (a) α = 0.05. (b) α = 0.1. (c) α = 0.2. (d)
α = 0.5. (e) α = 1.

130

Figure B-16. ROC curves for optimized signatures with various α hyperparameter settings.

Table B-6. Uniqueness term hyperparameter weight optimization experiment. Showing results
using optimized signatures with AUC NAUC for learning four target signatures on
all target types.

Uniqueness term NAUC

α = .05 0.135
α = .1 0.180
α = .2 0.140
α = .5 0.176
α = 1 0.171

131

(a) (b)

(c) (d)

(e) (f)

Figure B-17. Optimized signatures for Multi-Target MI-ACE using original multi-target
objective function with various kernel bandwidths, σ, for weighted kernel
optimization on MUUFL Gulfport data, all targets. (a) σ = 0.05. (b) σ = 0.1.
(c) σ = 0.2. (d) σ = 0.4. (e) σ = 0.6. (f) σ = 1.

132

Figure B-18. ROC Curve for Multi-Target MI-ACE using original multi-target objective function
with various kernel bandwidths, σ, for weighted optimization on MUUFL Gulfport
data, all targets.

Table B-7. Kernel bandwidth hyperparameter optimization experiment for weighted
optimization. Showing results using optimized signatures with AUC NAUC for
learning four target signatures on all target types.

Bandwidth NAUC

σ = .05 0.004
σ = .1 0.039
σ = .2 0.068
σ = .4 0.010
σ = .6 0.032
σ = 1 0.024

133

REFERENCES

Baldridge, AM, Hook, SJ, Grove, CI, and Rivera, G. “The ASTER spectral library version 2.0.”
Remote Sensing of Environment 113 (2009).4: 711–715.

Basener, William F. “Clutter and anomaly removal for enhanced target detection.” Algorithms
and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI. vol. 7695.
International Society for Optics and Photonics, 2010, 769525.

Broadwater, Joshua and Chellappa, Rama. “Hybrid detectors for subpixel targets.” IEEE
transactions on pattern analysis and machine intelligence 29 (2007).11: 1891–1903.

Chen, Scott Shaobing, Donoho, David L, and Saunders, Michael A. “Atomic decomposition by
basis pursuit.” SIAM review 43 (2001).1: 129–159.

Dietterich, Thomas G, Lathrop, Richard H, and Lozano-Pérez, Tomás. “Solving the multiple
instance problem with axis-parallel rectangles.” Artificial intelligence 89 (1997).1-2: 31–71.

Gader, P, Zare, A, Close, R, Aitken, J, and Tuell, G. “Muufl gulfport hyperspectral and lidar
airborne data set.” Univ. Florida, Gainesville, FL, USA, Tech. Rep. REP-2013-570 (2013).

Glenn, T, Zare, A, Gader, P, and Dranishnikov, D. “Bullwinkle: Scoring code for sub-pixel
targets (version 1.0)[software].” 2013.

Jiao, Changzhe. Target concept learning from ambiguously labeled data. Ph.D. thesis,
University of Missouri, 2017.

Jiao, Changzhe, Chen, Chao, McGarvey, Ronald G, Bohlman, Stephanie, Jiao, Licheng, and
Zare, Alina. “Multiple instance hybrid estimator for hyperspectral target characterization and
sub-pixel target detection.” ISPRS Journal of Photogrammetry and Remote Sensing 146
(2018): 235–250.

Jiao, Changzhe and Zare, Alina. “Functions of multiple instances for learning target
signatures.” IEEE Transactions on Geoscience and Remote Sensing 53 (2015).8: 4670–4686.

———. “FUMI.” https://github.com/GatorSense/FUMI, 2016.

———. “Multiple instance hybrid estimator for learning target signatures.” arXiv preprint
arXiv:1701.02258 (2017).

Karem, Andrew and Frigui, Hichem. “Fuzzy clustering of multiple instance data.” Fuzzy
Systems (FUZZ-IEEE), 2015 IEEE International Conference on. IEEE, 2015, 1–7.

———. “Multiple Instance Learning with multiple positive and negative target concepts.”
Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE, 2016, 474–479.

Kraut, Shawn and Scharf, Louis L. “The CFAR adaptive subspace detector is a scale-invariant
GLRT.” IEEE Transactions on Signal Processing 47 (1999).9: 2538–2541.

134

https://github.com/GatorSense/FUMI

Kraut, Shawn, Scharf, Louis L, and McWhorter, L Todd. “Adaptive subspace detectors.” IEEE
Transactions on signal processing 49 (2001).1: 1–16.

MacQueen, James et al. “Some methods for classification and analysis of multivariate
observations.” Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability. vol. 1. Oakland, CA, USA, 1967, 281–297.

Maron, Oded and Lozano-Pérez, Tomás. “A framework for multiple-instance learning.”
Advances in neural information processing systems. 1998, 570–576.

Maron, Oded and Ratan, Aparna Lakshmi. “Multiple-Instance Learning for Natural Scene
Classification.” ICML. vol. 98. 1998, 341–349.

Murphy, Kevin P. Machine learning: a probabilistic perspective. Cram101, 2013.

Nasrabadi, Nasser M. “Regularized spectral matched filter for target recognition in
hyperspectral imagery.” IEEE Signal Processing Letters 15 (2008): 317–320.

Peizhuang, Wang. “Pattern recognition with fuzzy objective function algorithms (James C.
Bezdek).” SIAM Review 25 (1983).3: 442.

Srinivas, Sampath. “A generalization of the noisy-or model.” Proceedings of the Ninth interna-
tional conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
1993, 208–215.

Tibshirani, Robert. “Regression shrinkage and selection via the lasso.” Journal of the Royal
Statistical Society. Series B (Methodological) (1996): 267–288.

Trabelsi, Mohamed and Frigui, Hichem. “Fuzzy and Possibilistic Clustering for Multiple
Instance Linear Regression.” 2018 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). IEEE, 2018, 1–7.

Wagstaff, Kiri L, Lane, Terran, and Roper, Alex. “Multiple-instance regression with structured
data.” Data Mining Workshops, 2008. ICDMW’08. IEEE International Conference on. IEEE,
2008, 291–300.

Zare, Alina and Gader, Paul. “Sparsity promoting iterated constrained endmember detection in
hyperspectral imagery.” IEEE Geoscience and Remote Sensing Letters 4 (2007).3: 446–450.

———. “Pattern recognition using functions of multiple instances.” Pattern Recognition
(ICPR), 2010 20th International Conference on. IEEE, 2010, 1092–1095.

Zare, Alina, Jiao, Changzhe, and Glenn, Taylor. “Discriminative multiple instance hyperspectral
target characterization.” IEEE transactions on pattern analysis and machine intelligence 40
(2018).10: 2342–2354.

Zhang, Qi and Goldman, Sally A. “EM-DD: An improved multiple-instance learning technique.”
Advances in neural information processing systems. 2002, 1073–1080.

135

BIOGRAPHICAL SKETCH

James Bocinsky was born in March 1995, in Melbourne, Florida. He received his

bachelor’s degree in computer engineering from the University of Florida, Gainesville, Florida,

in 2017. He continued his studies at the University of Florida in the Department of Electrical

and Computer Engineering as a Master of Science student. His research focuses on developing

multiple instance learning algorithms for subsurface explosive hazard detection. His other areas

of interest include digital signal processing, embedded systems programming, remote sensing,

and pattern recognition.

136

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Multiple Instance Learning for Target Detection
	2.1.1 Axis-parallel Rectangles
	2.1.1.1 GFS elim-count APR
	2.1.1.2 GFS elim-kde APR
	2.1.1.3 Iterated discrimination APR

	2.1.2 Diverse Density
	2.1.3 Expectation Maximization Diverse Density
	2.1.4 Functions of Multiple Instances
	2.1.4.1 Convex FUMI
	2.1.4.2 Extended FUMI

	2.1.5 Multiple Instance Adaptive Cosine Estimator/Spectral Match Filter
	2.1.6 Multiple Instance Hybrid Estimator

	2.2 General Clustering Methods
	2.2.1 K-Means
	2.2.2 Fuzzy C-Means
	2.2.3 Gaussian Mixture Model
	2.2.4 Summary

	2.3 MIL Clustering for Dictionary Learning
	2.3.1 Multiple Instance Cluster Regression
	2.3.2 Fuzzy Clustering of Multiple Instance Data
	2.3.3 Robust Fuzzy Clustering for Multiple Instance Linear Regression
	2.3.3.1 Initial regression models using fuzzy clustering
	2.3.3.2 Non-primary instances using possibilistic clustering
	2.3.3.3 Optimal number of regression models

	3 PROPOSED METHODS
	3.1 Multi-Target Multiple Instance Adaptive Cosine Estimator/Spectral Match Filter
	3.2 Greedy Initialization Approach
	3.3 Uniqueness Term Objective Function Initialization
	3.4 Clustering Initialization Approaches
	3.4.1 K-Means
	3.4.2 Ranked K-Means
	3.4.3 MI-CR

	3.5 Original MI-ACE and MI-SMF Optimization Extended for Multiple Targets
	3.6 Weighted Optimization Approach
	3.7 Uniqueness Term Objective Function Optimization

	4 EXPERIMENTAL RESULTS
	4.1 Synthetic Hyperspectral Target Detection Data
	4.1.1 Data Generation
	4.1.2 Synthetic Data Experiments

	4.2 MUUFL Gulfport Hyperspectral Target Detection Data
	4.2.1 Individual Target Type Detection Experiments
	4.2.1.1 Brown targets
	4.2.1.2 Faux vineyard green targets
	4.2.1.3 Dark green targets
	4.2.1.4 Pea green targets

	4.2.2 All Target Types Detection Experiments
	4.2.2.1 Initialization methods experiments
	4.2.2.2 Optimization methods experiments

	5 CONCLUSIONS AND FUTURE WORK
	A SIMULATED DATA HYPERPARAMETER EXPERIMENTS
	A.1 Initialization Hyperparameter Experiments
	A.2 Optimization Hyperparameter Experiments

	B MUUFL GULFPORT HYPERSPECTRAL HYPERPARAMETER EXPERIMENTS
	B.1 Single Target Initialization Hyperparameter Experiments
	B.2 All Targets Experiments
	B.2.1 Initialization Hyperparameter Experiments
	B.2.2 Optimization Hyperparameter Experiments

	REFERENCES
	BIOGRAPHICAL SKETCH

